A059214 Square array T(k,n) = C(n-1,k) + Sum_{i=0..k} C(n,i) read by antidiagonals (k >= 1, n >= 1).
2, 2, 4, 2, 4, 6, 2, 4, 8, 8, 2, 4, 8, 14, 10, 2, 4, 8, 16, 22, 12, 2, 4, 8, 16, 30, 32, 14, 2, 4, 8, 16, 32, 52, 44, 16, 2, 4, 8, 16, 32, 62, 84, 58, 18, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 2, 4, 8, 16, 32, 64
Offset: 1
Examples
Array begins 2 4 6 8 10 12 ... 2 4 8 14 22 32 ... 2 4 8 16 30 52 ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened).
- E. F. Harding, The number of partitions of a set of n points in k dimensions induced by hyperplanes, Proc. Edinburgh Math. Soc., 15 (1967), 285-289.
Crossrefs
Programs
-
Mathematica
A059214[k_,n_]:=Binomial[n-1,k]+Sum[Binomial[n,i],{i,0,k}]; Table[A059214[k-n+1,n],{k,10},{n,k}] (* Paolo Xausa, Dec 29 2023 *)
Formula
T(k,n) = C(n-1, k) + Sum_{i=0..k} C(n, i).
Comments