A059226 Triangle T(n,k) (0 <= k <= n) read by rows: top entry is 1, all other rows begin with 0; typical entry is sum of entry to left plus sum of all entries above it in the triangle.
1, 0, 1, 0, 2, 4, 0, 4, 12, 18, 0, 8, 32, 70, 94, 0, 16, 80, 224, 426, 544, 0, 32, 192, 648, 1536, 2708, 3370, 0, 64, 448, 1760, 4920, 10596, 17846, 21878, 0, 128, 1024, 4576, 14624, 36552, 74040, 121014, 146924, 0, 256, 2304, 11520, 41248
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 2, 4; 0, 4, 12, 18; 0, 8, 32, 70, 94; 0, 16, 80, 224, 426, 544; ... T(4,3) = 70 because it is the sum of the entry to the left (32) plus the sum of all the entries above position (4,3), which give 1 + 0 + 1 + 2 + 4 + 12 + 18.
Links
Crossrefs
Programs
-
Maple
T := proc(i,j) option remember; local r,s,t1; if i=0 and j=0 then RETURN(1); fi; if j=0 then RETURN(0); fi; t1 := T(i,j-1); for r from 0 to i-j do for s from 0 to j do if r+s <> i then t1 := t1+T(r+s,s); fi; od: od: RETURN(t1); end; # n-th row is T(n,0), T(n,1), ..., T(n,n) To get the triangle formed when the left diagonal has a single 1 in position k: T := proc(i,j,k) option remember; local r,s,t1; if i < k then RETURN(0); fi; if i = k then RETURN(1); fi; if j = 0 then RETURN(0); fi; t1 := T(i,j-1,k); for r from 0 to i-j do for s from 0 to j do if r+s <> i then t1 := t1+T(r+s,s,k); fi; od: od: t1; end;
-
Mathematica
T [i_, j_] := T[i, j] = Module[{r, s, t1}, If[i == 0 && j == 0, Return[1]]; If[j == 0, Return[0]]; t1 = T[i, j-1]; For[r = 0, r <= i-j, r++, For[s = 0, s <= j, s++, If[r+s != i, t1 = t1 + T[r+s, s]]]]; Return[t1]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 26 2013, translated from Maple *)
Comments