This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059257 #22 Sep 08 2022 08:45:02 %S A059257 283,659,941,1129,1223,1693,1787,2069,2351,2539,2633,3761,4231,4513, %T A059257 4889,5077,5171,5641,5923,6299,6581,6863,7333,8179,8273,8461,8837, %U A059257 9871,10247,10529,11093,11657,11939,12409,12503,12973,13537,13913,14759 %N A059257 Primes p such that x^47 = 2 has no solution mod p. %C A059257 Presumably this is also Primes congruent to 1 mod 47. - _N. J. A. Sloane_, Jul 11 2008. Not so! The smallest counterexample is 26227: 26227 == 1 (mod 47), but 131^47 == 2 (mod 26227), therefore this prime is not in the sequence. - _Bruno Berselli_, Sep 12 2012 %C A059257 All terms are 1 mod 94. - _Charles R Greathouse IV_, Sep 13 2012 %C A059257 Complement of A216885 relative to A000040. - _Vincenzo Librandi_, Sep 20 2012 %H A059257 Vincenzo Librandi, <a href="/A059257/b059257.txt">Table of n, a(n) for n = 1..1000</a> %t A059257 ok[p_]:= Reduce[Mod[x^47 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[1800]], ok] (* _Vincenzo Librandi_, Sep 20 2012 *) %o A059257 (Magma) [p: p in PrimesUpTo(15000) | forall{x: x in ResidueClassRing(p) | x^47 ne 2}]; // _Bruno Berselli_, Sep 12 2012 %o A059257 (PARI) select(p->!ispower(Mod(2,p),47),primes(3000)) \\ _Charles R Greathouse IV_, Sep 13 2012 %Y A059257 Cf. A000040, A058853. %K A059257 nonn,easy %O A059257 1,1 %A A059257 _Klaus Brockhaus_, Jan 23 2001