cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059264 Primes p such that x^12 = 2 has no solution mod p.

This page as a plain text file.
%I A059264 #15 Nov 08 2016 22:28:50
%S A059264 3,5,7,11,13,17,19,29,37,41,43,53,59,61,67,73,79,83,97,101,103,107,
%T A059264 109,131,137,139,149,151,157,163,173,179,181,193,197,199,211,227,229,
%U A059264 241,251,269,271,277,283,293,307,313,317,331,337,347,349,367,373,379,389
%N A059264 Primes p such that x^12 = 2 has no solution mod p.
%C A059264 Complement of A049544 relative to A000040.
%C A059264 Coincides for the first 119 terms with sequence of primes p such that x^36 = 2 has no solution mod p (first divergence is at 919, cf. A059668).
%H A059264 Vincenzo Librandi, <a href="/A059264/b059264.txt">Table of n, a(n) for n = 1..5000</a>
%t A059264 ok[p_] := Reduce[Mod[x^12 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[100]],ok] (* _Vincenzo Librandi_, Sep 14 2012 *)
%t A059264 Select[ Prime@ Range@ PrimePi@400, !MemberQ[ PowerMod[ Range@#, 12, #], Mod[2, #]] &] (* _Robert G. Wilson v_, Nov 05 2016 after _Bruno Berselli_ in A059362 *)
%Y A059264 Cf. A000040, A049544, A049568, A059668.
%K A059264 easy,nonn
%O A059264 1,1
%A A059264 _Klaus Brockhaus_, Jan 23 2001