This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059340 #22 Mar 07 2020 08:50:22 %S A059340 1,2,1,5,5,1,15,23,10,1,52,109,76,19,1,203,544,531,224,36,1,877,2876, %T A059340 3641,2204,631,69,1,4140,16113,25208,20089,8471,1749,134,1,21147, %U A059340 95495,178564,177631,100171,31331,4838,263,1 %N A059340 Triangle T(n,k) of numbers with e.g.f. exp((exp((1+x)*y)-1)/(1+x)), k=0..n-1. %C A059340 Essentially triangle given by [1,1,1,2,1,3,1,4,1,5,1,6,...] DELTA [0,1,0,2,0,3,0,4,0,5,0,6,...] = [1;1,0;2,1,0;5,5,1,0;15,23,10,1,0;...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Nov 20 2006 %H A059340 G. C. Greubel, <a href="/A059340/b059340.txt">Table of n, a(n) for n = 1..1275</a> %F A059340 T(n,k) = Sum_{i=0..n} stirling2(n, n-i)*binomial(i, k). %F A059340 T(n,k) = Sum_{i=0..n} stirling2(n, i)*binomial(n-i, k). - _Peter Luschny_, Aug 06 2015 %e A059340 Triangle starts: %e A059340 1; %e A059340 2, 1; %e A059340 5, 5, 1; %e A059340 15, 23, 10, 1; %e A059340 52, 109, 76, 19, 1; %t A059340 Table[Sum[StirlingS2[n, j]*Binomial[n - j, k], {j, 0, n}], {n, 1, %t A059340 5}, {k, 0, n - 1}] (* _G. C. Greubel_, Jan 07 2017 *) %o A059340 (Sage) %o A059340 T = lambda n,k: sum(stirling_number2(n,j)*binomial(n-j,k) for j in (0..n)) %o A059340 # Also "for n in (0..11): print([T(n,k) for k in (0..n)])" makes sense. %o A059340 for n in (1..11): print([T(n,k) for k in (0..n-1)]) # _Peter Luschny_, Aug 06 2015 %Y A059340 Row sums = A004211, T(n,0) = A000110. %K A059340 easy,nonn,tabl %O A059340 1,2 %A A059340 _Vladeta Jovovic_, Jan 27 2001