This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059341 #16 Jul 02 2025 16:02:00 %S A059341 1,1,-1,1,-1,0,1,-3,0,1,1,-2,0,1,0,1,-5,0,5,0,-1,1,-3,0,5,0,-3,0,1,-7, %T A059341 0,35,0,-21,0,17,1,-4,0,14,0,-28,0,17,0,1,-9,0,21,0,-63,0,153,0,-31,1, %U A059341 -5,0,30,0,-126,0,255,0,-155,0,1,-11,0,165,0,-231,0,2805,0,-1705,0,691,1,-6,0,55,0,-396,0,1683,0,-3410,0,2073,0,1,-13 %N A059341 Triangle giving numerators of coefficients of Euler polynomials, highest powers first. %D A059341 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809. %D A059341 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14b]. %H A059341 G. C. Greubel, <a href="/A059341/b059341.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A059341 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %e A059341 1; x-1/2; x^2-x; x^3-3*x^2/2+1/4; ... %p A059341 for n from 0 to 30 do for k from n to 0 by -1 do printf(`%d,`,numer(coeff(euler(n,x), x, k))) od:od: %t A059341 Numerator[Table[Reverse[CoefficientList[Series[EulerE[n, x], {x, 0, 20}], x]], {n, 0, 10}]]//Flatten (* _G. C. Greubel_, Jan 07 2017 *) %Y A059341 Cf. A059342. See also A004172, A004173, A004174, A004175, A011934, A020523, A020524, A020525, A020526, A020547, A020548, A058940. %K A059341 sign,tabf,frac,easy %O A059341 0,8 %A A059341 _N. J. A. Sloane_, Jan 27 2001 %E A059341 More terms from _James Sellers_, Jan 29 2001