This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059342 #14 Jul 02 2025 16:02:00 %S A059342 1,1,2,1,1,1,1,2,1,4,1,1,1,1,1,1,2,1,2,1,2,1,1,1,1,1,1,1,1,2,1,4,1,2, %T A059342 1,8,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,2, %U A059342 1,4,1,1,1,4,1,2,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2 %N A059342 Triangle giving denominators of coefficients of Euler polynomials, highest powers first. %D A059342 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809. %D A059342 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 48, [14b]. %H A059342 G. C. Greubel, <a href="/A059342/b059342.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A059342 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %e A059342 1; x-1/2; x^2-x; x^3-3*x^2/2+1/4; ... %p A059342 for n from 0 to 30 do for k from n to 0 by -1 do printf(`%d,`,denom(coeff(euler(n,x), x, k))) od:od: %t A059342 Denominator[Table[Reverse[CoefficientList[Series[EulerE[n, x], {x, 0, 20}], x]], {n, 0, 10}]] (* _G. C. Greubel_, Jan 07 2017 *) %Y A059342 Cf. A059341. See also A004172 A004173 A004174 A004175 A011934 A020523 A020524 A020525 A020526 A020547 A020548 A058940. %K A059342 nonn,tabf,frac,easy %O A059342 0,3 %A A059342 _N. J. A. Sloane_, Jan 27 2001 %E A059342 More terms from _James Sellers_, Jan 29 2001