A059346 Difference array of Catalan numbers A000108 read by antidiagonals.
1, 0, 1, 1, 1, 2, 1, 2, 3, 5, 3, 4, 6, 9, 14, 6, 9, 13, 19, 28, 42, 15, 21, 30, 43, 62, 90, 132, 36, 51, 72, 102, 145, 207, 297, 429, 91, 127, 178, 250, 352, 497, 704, 1001, 1430, 232, 323, 450, 628, 878, 1230, 1727, 2431, 3432, 4862, 603, 835, 1158, 1608, 2236, 3114
Offset: 0
Examples
Array starts: 1 1 2 5 14 42 132 429 0 1 3 9 28 90 297 1001 1 2 6 19 62 207 704 2431 1 4 13 43 145 497 1727 6071 3 9 30 102 352 1230 4344 15483 6 21 72 250 878 3114 11139 40143 15 51 178 628 2236 8025 29004 105477 36 127 450 1608 5789 20979 76473 280221 91 323 1158 4181 15190 55494 203748 751422 232 835 3023 11009 40304 148254 547674 2031054 603 2188 7986 29295 107950 399420 1483380 5527750 Triangle starts: 1; 0, 1; 1, 1, 2; 1, 2, 3, 5; 3, 4, 6, 9, 14;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
- Zhousheng Mei, Suijie Wang, Pattern Avoidance of Generalized Permutations, arXiv:1804.06265 [math.CO], 2018.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
- Benjamin Testart, Completing the enumeration of inversion sequences avoiding one or two patterns of length 3, arXiv:2407.07701 [math.CO], 2024. See p. 36.
Crossrefs
Programs
-
Maple
T := (n,k) -> (-1)^(n-k)*binomial(2*k,k)*hypergeom([k-n,k+1/2], [k+2], 4)/(k+1): seq(seq(simplify(T(n,k)), k=0..n), n=0..10); # Peter Luschny, Aug 16 2012, updated May 25 2021
-
Mathematica
max = 11; t = Table[ Differences[ Table[ CatalanNumber[k], {k, 0, max}], n], {n, 0, max}]; Flatten[ Table[t[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Nov 15 2011 *)
-
Sage
def T(n, k) : if k > n : return 0 if n == k : return binomial(2*n, n)/(n+1) return T(n-1, k) - T(n, k+1) A059346 = lambda n,k: (-1)^(n-k)*T(n, k) for n in (0..5): [A059346(n,k) for k in (0..n)] # Peter Luschny, Aug 16 2012
Formula
T(n, k) = (-1)^(n-k)*binomial(2*k,k)/(k+1)*hypergeometric([k-n, k+1/2],[k+2], 4). - Peter Luschny, Aug 16 2012
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Feb 16 2001