This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059347 #22 Jan 08 2017 03:50:58 %S A059347 1,0,1,1,1,2,0,1,2,4,2,2,3,5,9,0,2,4,7,12,21,5,5,7,11,18,30,51,0,5,10, %T A059347 17,28,46,76,127,14,14,19,29,46,74,120,196,323,0,14,28,47,76,122,196, %U A059347 316,512,835,42,42,56,84,131,207,329,525,841,1353,2188,0,42,84,140,224 %N A059347 Difference array of Motzkin numbers A001006 read by antidiagonals. %C A059347 Row sums of odd rows (e.g., 4 = 1+1+2 for 3rd row) equal the Motzkin number of next row. Row sums of even rows equal the Motzkin number of the next row - n!/((n/2)!((n/2)+1)!) (i.e., A001006(n) - A000108(n/2) where A000108 are the Catalan numbers). - _Gerald McGarvey_, Dec 05 2004 %H A059347 G. C. Greubel, <a href="/A059347/b059347.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A059347 F. R. Bernhart, <a href="http://dx.doi.org/10.1016/S0012-365X(99)00054-0">Catalan, Motzkin and Riordan numbers</a>, Discr. Math., 204 (1999), 73-112. %e A059347 Triangle begins: %e A059347 1; %e A059347 0,1; %e A059347 1,1,2; %e A059347 0,1,2,4; %e A059347 2,2,3,5,9; %e A059347 0,2,4,7,12,21; %e A059347 5,5,7,11,18,30,51; %e A059347 ... %t A059347 max = 12; A001006 = CoefficientList[ Series[ (1-x-(1-2x-3x^2)^(1/2))/(2x^2), {x, 0, max}], x] ; row[0] = A001006; row[n_] := Differences[A001006, n]; Flatten[ Table[ row[n-k][[k]], {n, 1, max}, {k, 1, n}]] (* _Jean-François Alcover_, Nov 12 2012, from formula *) %Y A059347 Top row is A001006, leading diagonals give A000108 (interspersed with 0's), A000108 doubled up, A059348. %K A059347 nonn,easy,nice,tabl %O A059347 0,6 %A A059347 _N. J. A. Sloane_, Jan 27 2001 %E A059347 More terms from Larry Reeves (larryr(AT)acm.org), Feb 16 2001