This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059362 #17 Sep 08 2022 08:45:02 %S A059362 3,5,7,11,13,17,19,29,37,41,43,53,59,61,67,73,79,83,97,101,103,107, %T A059362 109,113,131,137,139,149,151,157,163,173,179,181,193,197,199,211,227, %U A059362 229,241,251,269,271,277,281,283,293,307,313,317,331,337,347,349,353,367 %N A059362 Primes p such that x^24 = 2 has no solution mod p. %C A059362 Complement of A049556 relative to A000040. %C A059362 Coincides for the first 23 terms with sequence A059264 of primes p such that x^12 = 2 has no solution mod p (first divergence is at 113, cf. A059331). %C A059362 Coincides for the first 161 terms with sequence A212376 of primes p such that x^48 = 2 has no solution mod p (first divergence is at 1217, cf. A059669). %H A059362 Bruno Berselli, <a href="/A059362/b059362.txt">Table of n, a(n) for n = 1..1000</a> %t A059362 Select[Prime[Range[PrimePi[400]]], ! MemberQ[PowerMod[Range[#], 24, #], Mod[2, #]] &] (* _Bruno Berselli_, Sep 14 2012 *) %t A059362 ok[p_] := Reduce[Mod[x^24 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[80]], ok] (* _Vincenzo Librandi_, Sep 20 2012 *) %o A059362 (Magma) [p: p in PrimesUpTo(400) | forall{x: x in ResidueClassRing(p) | x^24 ne 2}]; // _Bruno Berselli_, Sep 14 2012 %Y A059362 Cf. A000040, A049556, A059264, A059331, A059669, A212376. %K A059362 nonn,easy %O A059362 1,1 %A A059362 _Klaus Brockhaus_, Jan 27 2001