This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059374 #18 Mar 28 2023 07:42:55 %S A059374 1,3,2,13,18,6,73,156,108,24,501,1460,1560,720,120,4051,15030,21900, %T A059374 15600,5400,720,37633,170142,315630,306600,163800,45360,5040,394353, %U A059374 2107448,4763976,5891760,4292400,1834560,423360,40320 %N A059374 Triangle read by rows, T(n, k) = Sum_{i=0..n} L'(n, n-i) * binomial(i, k), for k = 0..n-1. %C A059374 L'(n, i) are unsigned Lah numbers (Cf. A008297). %H A059374 G. C. Greubel, <a href="/A059374/b059374.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A059374 E.g.f.: exp(x/(1-(1+y)*x))/(1-(1+y)*x)^2. - _Vladeta Jovovic_, May 10 2003 %e A059374 Triangle begins: %e A059374 [1], %e A059374 [3, 2], %e A059374 [13, 18, 6], %e A059374 [73, 156, 108, 24], %e A059374 [501, 1460, 1560, 720, 120], %e A059374 ... %t A059374 t[n_, k_] := Sum[ Binomial[n-1, n-i-1]*n!/(n-i)!*Binomial[i, k], {i, 0, n}]; Table[t[n, k], {n, 1, 8}, {k, 0, n-1}] // Flatten (* _Jean-François Alcover_, Mar 22 2013 *) %o A059374 (PARI) for(n=1,10, for(k=0,n-1, print1(sum(j=0,n, binomial(j,k)* binomial(n-1,n-j-1)*n!/(n-j)!), ", "))) \\ _G. C. Greubel_, Jan 29 2018 %Y A059374 Cf. T(n, 0) = A000262, A025168 (row sums), A000012 (alternating row sums), A059110. %Y A059374 Cf. A008297, A271703. %K A059374 easy,nonn,tabl %O A059374 1,2 %A A059374 _Vladeta Jovovic_, Jan 28 2001