A059380 Array of values of Jordan function J_k(n) read by antidiagonals (version 2).
1, 1, 1, 1, 3, 2, 1, 7, 8, 2, 1, 15, 26, 12, 4, 1, 31, 80, 56, 24, 2, 1, 63, 242, 240, 124, 24, 6, 1, 127, 728, 992, 624, 182, 48, 4, 1, 255, 2186, 4032, 3124, 1200, 342, 48, 6, 1, 511, 6560, 16256, 15624, 7502, 2400, 448, 72, 4, 1, 1023, 19682
Offset: 1
Examples
Array begins: 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, ... 1, 3, 8, 12, 24, 24, 48, 48, 72, 72, ... 1, 7, 26, 56, 124, 182, 342, 448, 702, ... 1, 15, 80, 240, 624, 1200, 2400, 3840, ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
- R. Sivaramakrishnan, The many facets of Euler's totient. II. Generalizations and analogues, Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
-
Mathematica
JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n]; A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]],2]-n+1; A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2]; A059380[n_]:=JordanTotient[A002260[n],A004736[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
-
PARI
jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d)); A002260(n)=n-binomial(floor(1/2+sqrt(2*n)),2); A004736(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1; A059380(n)=jordantot(A002260(n),A004736(n)); \\ Enrique Pérez Herrero, Jan 08 2011