cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059384 a(n) = Product_{i=1..n} J_5(i).

This page as a plain text file.
%I A059384 #25 Feb 16 2025 08:32:43
%S A059384 1,31,7502,7441984,23248758016,174412182636032,2931171141381153792,
%T A059384 93047096712003345973248,5471727569246068763302821888,
%U A059384 529903984716066283313298482921472,85341036738522474927606720674503065600,20487310643596659421020979792003903940198400
%N A059384 a(n) = Product_{i=1..n} J_5(i).
%C A059384 a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = gcd(i,j)^5 for 1 <= i,j <= n. - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
%D A059384 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 203, #17.
%H A059384 G. C. Greubel, <a href="/A059384/b059384.txt">Table of n, a(n) for n = 1..120</a>
%H A059384 Antal Bege, <a href="http://www.emis.de/journals/AUSM/C1-1/MATH1-4.PDF">Hadamard product of GCD matrices</a>, Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 43-49.
%H A059384 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LePaigesTheorem.html">Le Paige's Theorem</a>
%t A059384 JordanTotient[n_Integer, k_: 1] := DivisorSum[n, #^k*MoebiusMu[n/#] &];  f[n_] := Times @@ (JordanTotient[#, 5] & /@ Range[n]); (* _Enrique Pérez Herrero_ *)  Array[f, 11] (* _Robert G. Wilson v_, Oct 08 2011 *)
%Y A059384 Cf. A001088, A059378, A059381, A059382, A059383, A175836.
%K A059384 nonn
%O A059384 1,2
%A A059384 _N. J. A. Sloane_, Jan 28 2001