cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059401 Numbers that contain as proper substrings every maximal prime power dividing them.

This page as a plain text file.
%I A059401 #17 Sep 01 2022 12:09:39
%S A059401 1197,2510,2570,5210,5230,5290,12590,14673,15230,20530,21530,22510,
%T A059401 23510,23570,24590,25030,25210,25310,25390,25430,25490,25510,25570,
%U A059401 25790,25910,25930,26570,26590,27530,28510,28570,29530,29570,32510
%N A059401 Numbers that contain as proper substrings every maximal prime power dividing them.
%C A059401 Most terms end in 0, since 2*5*prime will work if prime contains 2 and 5 as substrings. The other terms are listed in A059402.
%C A059401 There must be at least two maximal prime powers dividing each term. - _Harvey P. Dale_, Dec 04 2016
%H A059401 Reinhard Zumkeller, <a href="/A059401/b059401.txt">Table of n, a(n) for n = 1..10000</a>
%e A059401 1197 = 9 * 7 * 19 and all of these are substrings.
%t A059401 psmppQ[n_]:=Module[{pp=#[[1]]^#[[2]]&/@FactorInteger[n], idn= IntegerDigits[ n]}, Length[pp]>1&&And@@Table[ SequenceCount[ idn, IntegerDigits[pp[[i]]]]>0,{i,Length[pp]}]]; Select[Range[ 33000], psmppQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 04 2016 *)
%o A059401 (Haskell)
%o A059401 import Data.List (isInfixOf)
%o A059401 a059401 n = a059401_list !! (n-1)
%o A059401 a059401_list = filter (\x -> a010055 x == 0 &&
%o A059401                all (`isInfixOf` show x) (map show $ a141809_row x)) [1..]
%o A059401 -- _Reinhard Zumkeller_, Dec 16 2013
%Y A059401 Cf. A141809, A010055.
%Y A059401 Subsequence of A024619.
%Y A059401 A059402 is a subsequence.
%Y A059401 Equivalent sequence for primes instead of maximal prime powers: A050694.
%K A059401 base,nice,nonn
%O A059401 1,1
%A A059401 _Erich Friedman_, Jan 29 2001
%E A059401 Offset corrected by _Reinhard Zumkeller_, Dec 16 2013
%E A059401 Edited by _Peter Munn_, Sep 01 2022