cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059404 Numbers with different exponents in their prime factorizations.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1

Views

Author

Labos Elemer, Jul 18 2001

Keywords

Comments

Former name: Numbers k such that k/(largest power of squarefree kernel of k) is larger than 1.
Also numbers k = p(1)^alpha(1)* ... * p(r)^alpha(r) such that RootMeanSquare(alpha(1), ..., alpha(r)) is not an integer. - Ctibor O. Zizka, Sep 19 2008

Examples

			440 is in the sequence because 440 = 2^3*5*11 and it has two distinct exponents, 3 and 1.
		

Crossrefs

Complement of A072774 (powers of squarefree numbers).

Programs

  • Maple
    isA := n -> 1 < nops({seq(padic:-ordp(n, p), p in NumberTheory:-PrimeFactors(n))}): select(isA, [seq(1..190)]);  # Peter Luschny, Apr 14 2025
  • Mathematica
    A059404Q[n_] := Length[Union[FactorInteger[n][[All, 2]]]] > 1;
    Select[Range[200], A059404Q] (* Paolo Xausa, Jan 07 2025 *)
  • PARI
    is(n)=#Set(factor(n)[,2])>1 \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from sympy import factorint
    def ok(n): return len(set(factorint(n).values())) > 1
    print([k for k in range(190) if ok(k)]) # Michael S. Branicky, Sep 01 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A059404(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        def f(x): return n+1-(y:=x.bit_length())+sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024
    
  • SageMath
    def isA(n): return 1 < len(set(valuation(n, p) for p in prime_divisors(n)))
    print([n for n in range(1, 190) if isA(n)])  # Peter Luschny, Apr 14 2025

Formula

A062760(a(n)) > 1, i.e., a(n)/(A007947(a(n))^A051904(a(n))) = a(n)/A062759(a(n)) > 1.
A071625(a(n)) > 1. - Michael S. Branicky, Sep 01 2022
Sum_{n>=1} 1/a(n)^s = zeta(s) - 1 - Sum_{k>=1} (zeta(k*s)/zeta(2*k*s)-1) for s > 1. - Amiram Eldar, Mar 20 2025