A059404 Numbers with different exponents in their prime factorizations.
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200
Offset: 1
Examples
440 is in the sequence because 440 = 2^3*5*11 and it has two distinct exponents, 3 and 1.
Links
- Donald Alan Morrison, Table of n, a(n) for n = 1..10000
- Donald Alan Morrison, Sage program
Crossrefs
Programs
-
Maple
isA := n -> 1 < nops({seq(padic:-ordp(n, p), p in NumberTheory:-PrimeFactors(n))}): select(isA, [seq(1..190)]); # Peter Luschny, Apr 14 2025
-
Mathematica
A059404Q[n_] := Length[Union[FactorInteger[n][[All, 2]]]] > 1; Select[Range[200], A059404Q] (* Paolo Xausa, Jan 07 2025 *)
-
PARI
is(n)=#Set(factor(n)[,2])>1 \\ Charles R Greathouse IV, Sep 18 2015
-
Python
from sympy import factorint def ok(n): return len(set(factorint(n).values())) > 1 print([k for k in range(190) if ok(k)]) # Michael S. Branicky, Sep 01 2022
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A059404(n): def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))) def f(x): return n+1-(y:=x.bit_length())+sum(g(integer_nthroot(x,k)[0]) for k in range(1,y)) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 19 2024
-
SageMath
def isA(n): return 1 < len(set(valuation(n, p) for p in prime_divisors(n))) print([n for n in range(1, 190) if isA(n)]) # Peter Luschny, Apr 14 2025
Formula
A071625(a(n)) > 1. - Michael S. Branicky, Sep 01 2022
Sum_{n>=1} 1/a(n)^s = zeta(s) - 1 - Sum_{k>=1} (zeta(k*s)/zeta(2*k*s)-1) for s > 1. - Amiram Eldar, Mar 20 2025
Comments