This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059405 #10 Jan 10 2020 09:18:46 %S A059405 1,2,3,4,5,6,7,8,9,128,135,175,384,432,672,735,1296,1715,6144,6912, %T A059405 13824,18432,23328,34992,82944,93312,131712,248832,442368,1492992, %U A059405 2239488,2333772,2612736,3981312,4128768,4741632,9289728,12192768 %N A059405 Numbers that are the product of their digits raised to positive integer powers. %C A059405 The second example suggests that a repeated digit must divide the number at least as many times as it occurs, i.e., "distinct [digits]" in the definition would give a different (super)set. What would be the additional terms? - _M. F. Hasler_, Jan 05 2020 %H A059405 Reinhard Zumkeller, <a href="/A059405/b059405.txt">Table of n, a(n) for n = 1..120</a> %e A059405 a(17) = 1296 = (1)(2^2)(9)(6^2); %e A059405 a(32) = 2333772 = (2)(3)(3)(3^3)(7)(7^3)(2). %o A059405 (Haskell) %o A059405 a059405 n = a059405_list !! (n-1) %o A059405 a059405_list = filter f a238985_list where %o A059405 f x = all (== 0) (map (mod x) digs) && g x digs where %o A059405 g z [] = z == 1 %o A059405 g z ds'@(d:ds) = r == 0 && (h z' ds' || g z' ds) %o A059405 where (z', r) = divMod z d %o A059405 h z [] = z == 1 %o A059405 h z ds'@(d:ds) = r == 0 && h z' ds' || g z ds %o A059405 where (z', r) = divMod z d %o A059405 digs = map (read . return) $ filter (/= '1') $ show x %o A059405 -- _Reinhard Zumkeller_, Apr 29 2015 %Y A059405 Subsequence of A238985. %K A059405 base,nice,nonn %O A059405 1,2 %A A059405 _Erich Friedman_, Jan 29 2001 %E A059405 More terms from _Erich Friedman_, Apr 01 2003 %E A059405 Offset changed by _Reinhard Zumkeller_, Apr 29 2015