cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059413 Number of distinct languages accepted by unary DFA's with n states.

Original entry on oeis.org

2, 6, 18, 48, 126, 306, 738, 1716, 3936, 8862, 19770, 43560, 95310, 206874, 446478, 958236, 2047542, 4356660, 9237606, 19522752, 41142522, 86477298, 181343202, 379459284, 792472968, 1652046606, 3438310428, 7145039916, 14826950742
Offset: 1

Views

Author

Jeffrey Shallit, Jan 30 2001

Keywords

Comments

a(n) is also the number of permutations of [n+1] realized by the binary shift. The binary shift is the operation (w_1,w_2,w_3,...) -> (w_2,w_3,...) on infinite binary words. The relative order (lexicographically) of the first k shifts of a word, assuming they are all different, determines a realized permutation of length k. [Sergi Elizalde, Jun 23 2011]
Also, sum over A059412(1..n), hence number of ultimately periodic binary sequences uvvvv... with |u|+|v| <= n. - Michael Vielhaber, Mar 19 2022

Examples

			a(1) = 2 because there are exactly two languages accepted by unary DFA's with 1 state. Also, because both permutations of length 2 are realized by the binary shift: the word 01000... realizes 12, and the word 1000... realizes 21.
		

References

  • M. Domaratzki, D. Kisman, and J. Shallit, On the number of distinct languages accepted by finite automata with n states, J. Autom. Lang. Combinat. 7 (2002) 4-18, Section 6, g_1(n)
  • Cyril Nicaud, Average state complexity of operations on unary automata, Math. Foundations of Computer Science, 1999, Lect. Notes in Computer Sci. #1672, pp. 231-240
  • Jeffrey Shallit, Notes on Enumeration of Finite Automata, manuscript, Jan 30, 2001

Programs

Formula

sum(psi(t)*2^(n-t), t=1..n), where psi(n) is number of primitive words of length n over a 2-letter alphabet (expressible in terms of the Moebius function).
Hence, a(n) = 2*a(n-1) + psi(n), with a(0)=0 or a(1)=2.