cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059415 Numerators of sequence arising from Apery's proof that zeta(3) is irrational.

This page as a plain text file.
%I A059415 #15 Dec 04 2016 04:46:39
%S A059415 0,6,351,62531,11424695,35441662103,20637706271,963652602684713,
%T A059415 43190915887542721,1502663969043851254939,43786938951280269198311,
%U A059415 13780864457900933987428453,51520703555193710949642777493
%N A059415 Numerators of sequence arising from Apery's proof that zeta(3) is irrational.
%D A059415 M. Kontsevich and D. Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
%H A059415 Seiichi Manyama, <a href="/A059415/b059415.txt">Table of n, a(n) for n = 0..358</a>
%H A059415 V. Strehl, <a href="http://www.mat.univie.ac.at/~slc/opapers/s29strehl.html">Recurrences and Legendre transform</a>, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
%F A059415 (n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n +5)*a(n) - n^3*a(n-1), n >= 1.
%e A059415 0, 6, 351/4, 62531/36, ...
%p A059415 a := proc(n) option remember; if n=0 then 0 elif n=1 then 6 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
%t A059415 a[n_] := Sum[ Binomial[n, k]^2*Binomial[k + n, k]^2*(Sum[1/m^3, {m, 1, n}] + Sum[(-1)^(m - 1)/(2*m^3*Binomial[n, m]*Binomial[m + n, m]), {m, 1, k}]), {k, 0, n}]; Table[a[n] // Numerator, {n, 0, 12}] (* _Jean-François Alcover_, Jul 16 2013, from the non-recursive formula *)
%Y A059415 Cf. A059416, A005259.
%K A059415 nonn,frac
%O A059415 0,2
%A A059415 _N. J. A. Sloane_, Jan 30 2001