A059416 Denominators of sequence arising from Apery's proof that zeta(3) is irrational.
1, 1, 4, 36, 288, 36000, 800, 1372000, 2195200, 2667168000, 2667168000, 28400004864, 3550000608000, 311974053431040, 7799351335776000, 7799351335776000, 1134451103385600, 306545704901339904000, 6812126775585331200, 233621887768698933504000
Offset: 0
Examples
0, 6, 351/4, 62531/36, ...
References
- M. Kontsevich and D. Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..768
- V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
Programs
-
Maple
a := proc(n) option remember; if n=0 then 0 elif n=1 then 6 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
-
Mathematica
a[n_] := Sum[ Binomial[n, k]^2*Binomial[k + n, k]^2*(Sum[1/m^3, {m, 1, n}] + Sum[(-1)^(m - 1)/(2*m^3*Binomial[n, m]*Binomial[m + n, m]), {m, 1, k}]), {k, 0, n}]; Table[a[n] // Denominator, {n, 0, 19}] (* Jean-François Alcover, Jul 16 2013, from the non-recursive formula *)
Formula
(n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n +5)*a(n) - n^3*a(n-1), n >= 1.