cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059418 Triangle T(n,k) arising from enumeration of permutations with ordered orbits, read by rows (1<=k<=n).

This page as a plain text file.
%I A059418 #11 Jul 09 2012 07:01:17
%S A059418 1,1,1,3,2,1,12,7,4,1,60,33,19,7,1,360,192,109,47,11,1,2520,1320,737,
%T A059418 344,102,16,1,20160,10440,5742,2801,956,198,22,1,181440,93240,50634,
%U A059418 25349,9493,2342,352,29,1,1814400,927360,498312,253426,101293,28229
%N A059418 Triangle T(n,k) arising from enumeration of permutations with ordered orbits, read by rows (1<=k<=n).
%C A059418 From Peter Bala, Jul 08 2012: (Start)
%C A059418 A non-plane recursive tree is a rooted labeled plane tree (the children of a node are not ordered) with the property that the labels increase along any path from the root to a leaf. T(n,k) counts the total number of vertices of outdegree k among the set of n! non-plane recursive trees on n+1 vertices. An example is given below.
%C A059418 (End)
%D A059418 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 258, #10, F(n,k).
%H A059418 M. Drmota, <a href="http://www.dmg.tuwien.ac.at/drmota/recursivetrees.pdf">Recursive Trees</a>.
%F A059418 T(n, k) = (n-2)*T(n-1, k) + T(n-1, k-1), T(n, 1)=n!/2, T(n, n)=1.
%F A059418 From Peter Bala, Jul 08 2012: (Start)
%F A059418 E.g.f.: A(x,z) = x/(2-x){1/(1-z) - 1/(1-z)^(x-1)} = x*z + (x+x^2)*z^2/2! + (3*x+2*x^2+x^3)*z^3/3! + ....
%F A059418 A(x+1,z) is an e.g.f. for the row reverse of A109822 and A(x+2,z) generates the triangle of unsigned Stirling numbers of the first kind A130534 but with the first column omitted.
%F A059418 E.g.f. for column k: 1/(2^k*(1-x)) + (x-1)*sum {j = 0..k-1} 1/(j!*2^(k-j))*log^j(1/(1-x)) - see Drmota.
%F A059418 The row polynomial R(n,x) satisfies the recurrence equation R(n,x) = (x+n-2)*R(n-1,x) + (n-1)!*x with R(1,x) = x and also the recurrence R(n,x) = (x+2*n-3)*R(n-1,x) - (n-1)*(x+n-3)*R(n-2,x) with R(1,x) = x and R(2,x) = x+x^2. R(n,x) = {(x-1)*x*(x+1)*...*(x+n-2) - n!}/(x-2).
%F A059418 (End)
%e A059418 1; 1,1; 3,2,1; 12,7,4,1; 60,33,19,7,1; ...
%e A059418 Row 3: [12,7,4,1]. There are 6 non-plane recursive trees on 4 nodes.
%e A059418 The total number of nodes of outdegree 0 = 1+2+2+2+2+3 = 12;
%e A059418 The total number of nodes of outdegree 1 = 3+1+1+1+1 = 7;
%e A059418 The total number of nodes of outdegree 2 = 1+1+1+1 = 4;
%e A059418 The total number of nodes of outdegree 3 = 1;
%e A059418 ...................................................................
%e A059418 .0o......0o..........0o..........0o.........0o...........0o........
%e A059418 ..|.......|........../.\........./.\......../.\........../|\.......
%e A059418 ..|.......|........./...\......./...\....../...\......../.|.\......
%e A059418 .1o......1o.......1o.....o3...1o....o2...2o.....o1...../..|..\.....
%e A059418 ..|....../.\.......|...........|..........|..........1o..2o...o3...
%e A059418 ..|...../...\......|...........|..........|........................
%e A059418 .2o...2o.....o3...2o..........3o.........3o........................
%e A059418 ..|................................................................
%e A059418 ..|................................................................
%e A059418 .3o................................................................
%e A059418 ....................................... - _Peter Bala_, Jul 08 2012
%t A059418 t[n_, k_] := (n - 2)*t[n - 1, k] + t[n - 1, k - 1]; t[n_, n_] := 1; t[n_, 1] = n!/2; Table[t[n, k], {n, 10}, {k, n}] // Flatten (* _Robert G. Wilson v_, Jul 08 2012 *)
%Y A059418 Diagonals give A001710, A006595.  A109822, A130534.
%K A059418 nonn,easy,tabl
%O A059418 1,4
%A A059418 _N. J. A. Sloane_, Jan 30 2001
%E A059418 More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001