cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059435 Number of lattice paths in plane starting at (0,0) and ending at (n,n) with steps from {(i,j): i+j > 0, i, j >= 0} that never go below the line y = x.

This page as a plain text file.
%I A059435 #65 Aug 16 2024 23:11:39
%S A059435 1,2,12,88,720,6304,57792,547712,5323008,52761088,531311616,
%T A059435 5420488704,55905767424,581954543616,6106210615296,64513688174592,
%U A059435 685741070942208,7328106153115648,78684992821788672,848487859401261056
%N A059435 Number of lattice paths in plane starting at (0,0) and ending at (n,n) with steps from {(i,j): i+j > 0, i, j >= 0} that never go below the line y = x.
%C A059435 Series reversion of x(1-4x)/(1-2x). - _Paul Barry_, May 19 2005
%C A059435 The Hankel transform of this sequence is 8^C(n+1,2) = [1, 8, 512, 262144, ...]. - _Philippe Deléham_, Nov 08 2007
%D A059435 W.-J. Woan, A bijective proof by induction that the n-th term of this sequence is 2^(n-1) times of the n-th term of the big Schroeder number, 2001 (unpublished).
%H A059435 Vincenzo Librandi, <a href="/A059435/b059435.txt">Table of n, a(n) for n = 0..200</a>
%H A059435 David Callan, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i1r82/0">A uniformly distributed statistic on a class of lattice paths</a>, Electronic J. Combinatorics, Vol. 11(1), R82, 2004.
%H A059435 Z. Chen and H. Pan, <a href="http://arxiv.org/abs/1608.02448">Identities involving weighted Catalan-Schroder and Motzkin Paths</a>, arXiv:1608.02448 (2016); see Eq. (1.13) with a=2 and b=4.
%H A059435 Ira M. Gessel, <a href="http://dx.doi.org/10.1016/0097-3165(80)90074-6">A factorization for formal Laurent series and lattice path enumeration</a>, J. Combin. Theory Ser. A 28 (1980), 321-337.
%H A059435 Elina Robeva and Melinda Sun, <a href="https://arxiv.org/abs/2007.00877">Bimonotone Subdivisions of Point Configurations in the Plane</a>, arXiv:2007.00877 [math.CO], 2020. See B(2,n) column in Table 3 (p. 10).
%H A059435 Robert A. Sulanke, <a href="https://doi.org/10.37236/1518">Counting lattice paths by Narayana polynomials</a>, Electronic J. Combinatorics 7 (2000), R40.
%F A059435 a(n) = 2^n*A001003(n).
%F A059435 G.f.: (1 + 2*x - sqrt(4*x^2 - 12*x + 1))/(8*x).
%F A059435 From _Paul Barry_, May 19 2005: (Start)
%F A059435 a(n) = (1/(n + 1)) * Sum_{k=0..n} C(n+1, k) * C(2*n-k, n)(-1)^k * 4^(n-k) * 2^k;
%F A059435 a(n) = Sum_{k=0..n} (1/n) * C(n, k) * C(n, k+1) * 4^k * 2^(n-k);
%F A059435 a(n) = Sum_{k=1..n} N(n, k)*2^(n+k-1), for n >= 1, where N(n, k) are the Narayana numbers (A001263). [Corrected by _Alejandro H. Morales_, May 14 2015]
%F A059435 (End)
%F A059435 Recurrence: (n+1)*a(n) = 6*(2*n-1)*a(n-1) - 4*(n-2)*a(n-2). - _Vaclav Kotesovec_, Oct 11 2012
%F A059435 a(n) ~ sqrt(4+3*sqrt(2))*(6+4*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 11 2012
%p A059435 gf := (1+2*x-sqrt(4*x^2-12*x+1))/(8*x): s := series(gf, x, 100): for i from 0 to 50 do printf(`%d,`,coeff(s,x,i)) od:
%t A059435 Table[SeriesCoefficient[(1+2*x-Sqrt[4*x^2-12*x+1])/(8*x),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 11 2012 *)
%o A059435 (PARI) x='x+O('x^66); Vec((1+2*x-sqrt(4*x^2-12*x+1))/(8*x)) \\ _Joerg Arndt_, May 06 2013
%Y A059435 Cf. A001003, A006318, A054726.
%K A059435 nonn,easy
%O A059435 0,2
%A A059435 _Wenjin Woan_, Feb 01 2001