cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059436 Smallest number whose set of divisors contains each digit 0-9 at least n times.

This page as a plain text file.
%I A059436 #35 Mar 27 2024 17:33:26
%S A059436 108,540,1140,1890,3420,5460,7980,11760,16380,23520,23520,23760,38220,
%T A059436 38220,41580,41580,41580,71820,71820,71820,83160,83160,83160,124740,
%U A059436 124740,143640,166320,166320,249480,249480,249480,249480,311220,335160,415800,415800,415800,415800,415800,415800
%N A059436 Smallest number whose set of divisors contains each digit 0-9 at least n times.
%H A059436 Giovanni Resta, <a href="/A059436/b059436.txt">Table of n, a(n) for n = 1..1000</a>
%H A059436 Erich Friedman, <a href="https://erich-friedman.github.io/numbers.html">What's Special About This Number?</a> (See entry 7980.)
%e A059436 The divisors of 540 are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540 and every digit appears at least twice in this list.
%t A059436 T = 0*Range[25]; Do[d = Last /@ Tally@ Flatten[ IntegerDigits /@ Divisors@ n]; If[Length@d == 10, m = Min[25, d]; While[m > 0 && (T[[m]] == 0 || n < T[[m]]), T[[m--]] = n]], {n, 125000}]; T (* _Giovanni Resta_, May 15 2016 *)
%t A059436 sded[n_]:=With[{fid=Flatten[IntegerDigits/@Divisors[n]]},If[Length[Union[fid]]==10,{n,Min[ Tally[fid][[;;,2]]]},Nothing]]; Table[SelectFirst[sded/@Range[500000],#[[2]]>k&],{k,0,39}][[;;,1]] (* _Harvey P. Dale_, Mar 27 2024 *)
%o A059436 (Haskell)
%o A059436 import Data.List (group, sort)
%o A059436 a059436 n = head [x | x <- [1..],
%o A059436    let dds = map length $ group $ sort $ concatMap show $ a027750_row x,
%o A059436    minimum dds == n, length dds == 10]
%o A059436 -- _Reinhard Zumkeller_, Feb 04 2012
%Y A059436 Cf. A027750; subsequence of A095050, A095048.
%K A059436 base,nonn,nice
%O A059436 1,1
%A A059436 _Erich Friedman_, Feb 01 2001
%E A059436 More terms from _David W. Wilson_, Aug 31 2001
%E A059436 Offset corrected by _R. J. Mathar_, Jun 02 2010
%E A059436 a(10)-a(36) corrected by _Giovanni Resta_, May 15 2016
%E A059436 More terms from _Harvey P. Dale_, Mar 27 2024