This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059442 #84 Sep 04 2025 10:54:06 %S A059442 2,3,3,4,6,4,5,9,9,5,6,14,18,14,6,7,18,25,25,18,7,8,23 %N A059442 Array of Ramsey numbers R(n,k) (n >= 2, k >= 2) read by antidiagonals. %C A059442 See A212954 for another version of this table. The present entry is the main one for these Ramsey numbers R(n,k). %C A059442 From _Jianglin Luo_, Jan 08 2024: (Start) %C A059442 Fence conjecture: R(m,n) <= (2m-1)*A008284_T(2m-6+n,m) + m + 1 for n >= m >= 3. %C A059442 R(3,n) == 1,3,4 (mod 5) for n >= 1. (End) %D A059442 G. Berman and K. D. Fryer, Introduction to Combinatorics. Academic Press, NY, 1972, p. 175. %D A059442 T. Bohman and P. Keevash. Dynamic concentration of the triangle-free process. Random Structures & Algorithms, 58.2 (2021), 221-293. %D A059442 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 288. %D A059442 H. J. Ryser, Combinatorial Mathematics, Chapter 4 - A Theorem of Ramsey, Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 42. %D A059442 J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 840. %D A059442 G. Fiz Pontiveros, S. Griffiths, and R. Morris. The triangle-free process and the Ramsey number R(3, k). Mem. Amer. Math. Soc., 263.1274 (2020), v+125. %D A059442 H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 42. %H A059442 Vigleik Angeltveit and Brendan D. McKay, <a href="https://arxiv.org/abs/1703.08768">R(5,5) <= 48</a>, arXiv:1703.08768 [math.CO], 2017. %H A059442 Thomas Bloom, <a href="https://www.erdosproblems.com/77">Problem 77</a>, <a href="https://www.erdosproblems.com/78">Problem 78</a>, <a href="https://www.erdosproblems.com/87">Problem 87</a>, <a href="https://www.erdosproblems.com/545">Problem 545</a>, and <a href="https://www.erdosproblems.com/986">Problem 986</a>, Erdős Problems. %H A059442 Marcelo Campos, Simon Griffiths, Robert Morris, and Julian Sahasrabudhe, <a href="https://arxiv.org/abs/2303.09521">An exponential improvement for diagonal Ramsey</a>, arXiv preprint arXiv:2303.09521 [math.CO], 2023. %H A059442 Geoff Exoo, <a href="http://isu.indstate.edu/ge/RAMSEY">Ramsey Numbers</a>. %H A059442 R. E. Greenwood and A. M. Gleason, <a href="http://dx.doi.org/10.4153/CJM-1955-001-4">Combinatorial relations and chromatic graphs</a>, Canad. J. Math., 7 (1955), 1-7. %H A059442 R. Getschmann, <a href="http://www.getschmann.org/doc/thesis.html">Enumeration of Small Ramsey Graphs</a>. %H A059442 Jan Goedgebeur and Stanisław P. Radziszowski, <a href="http://arxiv.org/abs/1210.5826">New Computational Upper Bounds for Ramsey Numbers R(3,k)</a>, arXiv:1210.5826 [math.CO], 2012-2013. %H A059442 R. E. Greenwood and A. M. Gleason, <a href="http://dx.doi.org/10.4153/CJM-1955-001-4">Combinatorial relations and chromatic graphs</a>, Canad. J. Math., 7 (1955), 1-7. %H A059442 J. G. Kalbfleisch, <a href="http://dx.doi.org/10.4153/CMB-1965-041-7">Construction of special edge-chromatic graphs</a>, Canad. Math. Bull., 8 (1965), 575-584. %H A059442 Jeong Han Kim, <a href="https://people.tamu.edu/~huafei-yan//Teaching/Math689/ramsey5.pdf">The Ramsey number R(3, t) has order of magnitude t^2/log t</a>, Random Structures & Algorithms Vol. 7, No. 3 (1995), pp. 173-207. %H A059442 Richard L. Kramer, <a href="http://www.public.iastate.edu/~ricardo/ramsey">Ricardo's Ramsey Number Page</a>. %H A059442 Imre Leader, <a href="http://pass.maths.org.uk/issue16/features/ramsey/">Friends and Strangers</a>. %H A059442 Math Reference Project, <a href="http://www.mathreference.com/gph,ramsey.html">Ramsey Numbers</a>. %H A059442 Mathematical Database, <a href="https://web.archive.org/web/20051103112334 /http://mathdb.org/notes_download/elementary/combinatorics/de_D7/de_D7.pdf">Ramsey's Theory</a>. %H A059442 Sam Mattheus and Jacques Verstraete, <a href="https://arxiv.org/abs/2306.04007">The asymptotics of r(4,t)</a>, arXiv:2306.04007 [math.CO], 2023-2024. [Studies R(4,k)] %H A059442 Online Dictionary of Combinatorics, <a href="http://www.math.uic.edu/~fields/comb_dic/R.html">Ramsey's Theorem</a>. %H A059442 Ivars Peterson, Math Trek, <a href="http://web.archive.org/web/20000229093140/http://www.sciencenews.org/sn_arc99/12_4_99/mathland.htm">Party Games</a>, Science News Online, Vol. 156, No. 23, Dec 04 1999. %H A059442 Ivars Peterson, Math Trek, <a href="http://web.archive.org/web/20010414061349/http://www.maa.org/mathland/mathtrek_12_6_99.html">Party Games</a>, Dec 06 1999. %H A059442 Terence Tao, <a href="https://github.com/teorth/erdosproblems/blob/main/README.md#table">Erdős problem database</a>, see nos. 77-78, 87, 545, 986. %H A059442 Stanislaw Radziszowski, <a href="https://doi.org/10.37236/21">Small Ramsey Numbers</a>, The Electronic Journal of Combinatorics, Dynamic Surveys, DS1, Mar 3 2017. %H A059442 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamseyNumber.html">Ramsey Number</a>. %H A059442 Wikipedia, <a href="http://en.wikipedia.org/wiki/Ramsey_theorem">Ramsey's theorem</a>. %H A059442 Jin Xu and C. K. Wong, <a href="http://dx.doi.org/10.1016/S0012-365X(00)00020-0">Self-complementary graphs and Ramsey numbers I</a>, Discrete Math., 223 (2000), 309-326. %F A059442 From _Joerg Arndt_, Jun 01 2012: (Start) %F A059442 The antidiagonals are symmetric. %F A059442 R(r, 1) = R(1, r) = 1, %F A059442 R(r, 2) = R(2, r) = r, %F A059442 R(r, s) <= R(r-1, s) + R(r, s-1), %F A059442 R(r, s) <= R(r-1, s) + R(r, s-1) - 1 if R(r-1, s) and R(r, s-1) are both even, %F A059442 R(r, r) <= 4 * R(r, r-2) + 2. (End) %e A059442 Array R(n,k), n >= 2, k >= 2, begins: %e A059442 2, 3, 4, 5, 6, 7, 8, 9, 10, %e A059442 3, 6, 9, 14, 18, 23, 28, 36, %e A059442 4, 9, 18, 25, ?, ?, ?, %e A059442 5, 14, 25, ?, ?, ?, %e A059442 6, 18, ?, ?, ?, %e A059442 7, 23, ?, ?, %e A059442 8, 28, ?, %e A059442 9, 36, %e A059442 10, %Y A059442 The second (n = 3) row gives A000791. %Y A059442 A000984 gives the upper bound for R(n,n) from Ramsey's original proof. %Y A059442 A120414 gives a conjecture for R(n,n). %Y A059442 See A212954 for another version. %K A059442 nonn,tabl,nice,hard,changed %O A059442 0,1 %A A059442 _N. J. A. Sloane_, Feb 01 2001 %E A059442 Next term is in the range 35-41. %E A059442 More terms in example section (antidiagonals 6-10; cf. A000791) from _Omar E. Pol_, Jun 11 2012 %E A059442 Edited by _N. J. A. Sloane_, Nov 05 2023