This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059443 #34 Apr 18 2025 05:49:09 %S A059443 1,4,4,13,39,25,3,40,280,472,256,40,121,1815,6185,7255,3306,535,15, %T A059443 364,11284,70700,149660,131876,51640,8456,420,1093,68859,759045, %U A059443 2681063,3961356,2771685,954213,154637,9730,105,3280,416560,7894992,44659776,103290096 %N A059443 Triangle T(n,k) (n >= 2, k = 3..n+floor(n/2)) giving number of bicoverings of an n-set with k blocks. %D A059443 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #40. %D A059443 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983. %H A059443 Alois P. Heinz, <a href="/A059443/b059443.txt">Rows n = 2..60, flattened</a> %H A059443 L. Comtet, <a href="/A002718/a002718.pdf">Birecouvrements et birevĂȘtements d'un ensemble fini</a>, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.] %F A059443 E.g.f. for m-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y). %F A059443 T(n, k) = Sum{j=0..n} Stirling2(n, j) * A060052(j, k). - _David Pasino_, Sep 22 2016 %e A059443 T(2,3) = 1: 1|12|2. %e A059443 T(3,3) = 4: 1|123|23, 12|13|23, 12|123|3, 123|13|2. %e A059443 T(3,4) = 4: 1|12|23|3, 1|13|2|23, 1|123|2|3, 12|13|2|3. %e A059443 Triangle T(n,k) begins: %e A059443 : 1; %e A059443 : 4, 4; %e A059443 : 13, 39, 25, 3; %e A059443 : 40, 280, 472, 256, 40; %e A059443 : 121, 1815, 6185, 7255, 3306, 535, 15; %e A059443 : 364, 11284, 70700, 149660, 131876, 51640, 8456, 420; %e A059443 : 1093, 68859, 759045, 2681063, 3961356, 2771685, 954213, 154637, 9730, 105; %e A059443 ... %t A059443 nmax = 8; imax = 2*(nmax - 2); egf := E^(-x - 1/2*x^2*(E^y - 1))*Sum[(x^i/i!)*E^(Binomial[i, 2]*y), {i, 0, imax}]; fx = CoefficientList[ Series[ egf , {y, 0, imax}], y]*Range[0, imax]!; row[n_] := Drop[ CoefficientList[ Series[fx[[n + 1]], {x, 0, imax}], x], 3]; Table[ row[n], {n, 2, nmax}] // Flatten (* _Jean-François Alcover_, Sep 21 2012 *) %o A059443 (PARI) \ps 22; %o A059443 s = 8; pv = vector(s); for(n=1,s,pv[n]=round(polcoeff(f(x,y),n,y)*n!)); %o A059443 for(n=1,s,for(m=3,poldegree(pv[n],x),print1(polcoeff(pv[n],m),", "))) \\ _Gerald McGarvey_, Dec 03 2009 %Y A059443 Columns k=3-10 give: A003462, A059945, A059946, A059947, A059948, A059949, A059950, A059951. %Y A059443 Row sums are A002718. %Y A059443 Main diagonal gives A275517. %Y A059443 Right border gives A275521. %K A059443 tabf,nonn,nice %O A059443 2,2 %A A059443 _N. J. A. Sloane_, Feb 01 2001 %E A059443 More terms and additional comments from _Vladeta Jovovic_, Feb 14 2001 %E A059443 a(37) corrected by _Gerald McGarvey_, Dec 03 2009