cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059453 Sophie Germain primes (A005384) that are not safe primes (A005385).

This page as a plain text file.
%I A059453 #27 Jul 15 2024 10:23:48
%S A059453 2,3,29,41,53,89,113,131,173,191,233,239,251,281,293,419,431,443,491,
%T A059453 509,593,641,653,659,683,743,761,809,911,953,1013,1031,1049,1103,1223,
%U A059453 1229,1289,1409,1451,1481,1499,1511,1559,1583,1601,1733,1811,1889,1901
%N A059453 Sophie Germain primes (A005384) that are not safe primes (A005385).
%C A059453 Except for 2 and 3 these primes are congruent to 5 or 11 modulo 12.
%C A059453 Introducing terms of Cunningham chains of first kind.
%H A059453 Amiram Eldar, <a href="/A059453/b059453.txt">Table of n, a(n) for n = 1..10000</a>
%H A059453 Chris K. Caldwell, <a href="https://t5k.org/glossary/page.php/CunninghamChain">Cunningham Chains</a>.
%F A059453 A156660(a(n))*(1-A156659(a(n))) = 1. - _Reinhard Zumkeller_, Feb 18 2009
%e A059453 89 is a term because (89-1)/2 = 44 is not prime, but 2*89 + 1 = 179 is prime.
%t A059453 lst={};Do[p=Prime[n];If[ !PrimeQ[(p-1)/2],If[PrimeQ[2*p+1],AppendTo[lst,p]]],{n,6!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jun 24 2009 *)
%t A059453 Select[Prime[Range[300]],PrimeQ[2#+1]&&!PrimeQ[(#-1)/2]&] (* _Harvey P. Dale_, Nov 10 2017 *)
%o A059453 (Python)
%o A059453 from itertools import count, islice
%o A059453 from sympy import isprime, prime
%o A059453 def A059453_gen(): # generator of terms
%o A059453     return filter(lambda p:not isprime(p>>1) and isprime(p<<1|1),(prime(i) for i in count(1)))
%o A059453 A059453_list = list(islice(A059453_gen(),10)) # _Chai Wah Wu_, Jul 12 2022
%o A059453 (PARI) is(p) = isprime(p) && isprime(2*p+1) && if(p > 2, !isprime((p-1)/2), 1); \\ _Amiram Eldar_, Jul 15 2024
%Y A059453 Intersection of A005384 and A059456.
%Y A059453 Cf. A005385, A053176, A059452, A059453, A059454, A059455, A007700, A005602, A023272, A023302, A023330.
%K A059453 nonn
%O A059453 1,1
%A A059453 _Labos Elemer_, Feb 02 2001