cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059474 Triangle read by rows: T(n,k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w + 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...

This page as a plain text file.
%I A059474 #32 Jul 01 2025 00:59:24
%S A059474 1,2,2,4,6,4,8,16,16,8,16,40,52,40,16,32,96,152,152,96,32,64,224,416,
%T A059474 504,416,224,64,128,512,1088,1536,1536,1088,512,128,256,1152,2752,
%U A059474 4416,5136,4416,2752,1152,256,512,2560,6784,12160,16032,16032,12160,6784,2560,512
%N A059474 Triangle read by rows: T(n,k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w + 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...
%C A059474 Pascal-like triangle: start with 1 at top; every subsequent entry is the sum of everything above you, plus 1.
%H A059474 G. C. Greubel, <a href="/A059474/b059474.txt">Rows n = 0..50 of the triangle, flattened</a>
%F A059474 G.f.: 1/(1 - 2*z - 2*w + 2*z*w).
%F A059474 T(n, k) = Sum_{j=0..n} (-1)^j*2^(n + k - j)*C(n, j)*C(n + k - j, n).
%F A059474 T(n, 0) = T(n, n) = A000079(n).
%F A059474 T(2*n, n) = A084773(n).
%F A059474 T(n, k) = 2^n*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2). - _Peter Luschny_, Nov 26 2021
%F A059474 From _G. C. Greubel_, May 21 2023: (Start)
%F A059474 T(n, n-k) = T(n, k).
%F A059474 Sum_{k=0..n} T(n, k) = A007070(n).
%F A059474 Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).
%F A059474 T(n, 1) = A057711(n+1) = 2*A001792(n) - [n=0].
%F A059474 T(n, 2) = 4*A049611(n-1). (End)
%e A059474 Triangle begins as:
%e A059474    n\k [0]  [1]  [2]  [3]  [4]  [5]  [6] ...
%e A059474   [0]   1;
%e A059474   [1]   2,   2;
%e A059474   [2]   4,   6,   4;
%e A059474   [3]   8,  16,  16,   8;
%e A059474   [4]  16,  40,  52,  40,  16;
%e A059474   [5]  32,  96, 152, 152,  96,  32;
%e A059474   [6]  64, 224, 416, 504, 416, 224,  64;
%e A059474        ...
%p A059474 read transforms; SERIES2(1/(1-2*z-2*w+2*z*w),x,y,12): SERIES2TOLIST(%,x,y,12);
%p A059474 # Alternative
%p A059474 T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], 1/2):
%p A059474 for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # _Peter Luschny_, Nov 26 2021
%t A059474 Table[(-1)^k*2^n*JacobiP[k, -n-1,0,0], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Oct 04 2017; May 21 2023 *)
%o A059474 (Magma)
%o A059474 A059474:= func< n,k | (&+[(-1)^j*2^(n-j)*Binomial(n-k,j)*Binomial(n-j,n-k): j in [0..n-k]]) >;
%o A059474 [A059474(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 21 2023
%o A059474 (SageMath)
%o A059474 def A059474(n,k): return 2^n*binomial(n, k)*simplify(hypergeometric([-k, k-n], [-n], 1/2))
%o A059474 flatten([[A059474(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, May 21 2023
%Y A059474 Cf. A000079, A001792, A007070, A057711, A077957, A084773.
%Y A059474 See A059576 for a similar triangle.
%K A059474 nonn,tabl,easy
%O A059474 0,2
%A A059474 _N. J. A. Sloane_, Feb 03 2001; revised Jun 12 2005