cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059477 3-enumeration of n X n alternating-sign matrices.

Original entry on oeis.org

1, 1, 2, 9, 90, 2025, 102060, 11573604, 2946308904, 1687603650084, 2171945897658108, 6289412333143466241, 40940643700218614247324, 599627833263501883888374756, 19747212169938041691404746667280, 1463229065460461810019231236067824400
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2001

Keywords

Crossrefs

Cf. A005130.

Programs

  • Maple
    A059477 := proc(n) local i,j,t1; t1 := 3^(n^2-n)*2^(-n^2+n); for i from 1 to n do for j from 1 to n do if j-i mod 2 <> 0 then t1 := t1*(3*j-3*i+1)/(3*j-3*i); fi; od; od; t1; end;
  • Mathematica
    a[0] = 1; a[n_?OddQ] := a[n] = 3^((1/2)*((n-1)/2 + 1)*(n-1)) * Product[(3*k - 1)!^2/(k + (n-1)/2)!^2, {k, 1, (n - 1)/2}];
    a[n_?EvenQ] := (3^((n-2)/2)*((3*(n-2))/2 + 2)!*((n - 2)/2)! * a[n - 1])/(n - 1)!^2;
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Dec 28 2017, after Ralf Stephan *)

Formula

a(2m+1)=3^(m*(m+1))*prod(k=1, m, ((3*k-1)!/(m+k)!)^2), a(2m+2)=3^m*(3*m+2)!*m!/((2*m+1)!)^2*a(2m+1). - Ralf Stephan, Apr 24 2004