cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059479 Number of 3 X 3 matrices with elements from {0,...,n-1} such that the middle element of each of the eight lines of three (rows, columns and diagonals) is the square (mod n) of the difference of the end elements.

This page as a plain text file.
%I A059479 #30 Nov 03 2022 05:44:24
%S A059479 1,4,9,64,25,36,49,256,729,100,121,576,169,196,225,4096,289,2916,361,
%T A059479 1600,441,484,529,2304,15625,676,6561,3136,841,900,961,16384,1089,
%U A059479 1156,1225,46656,1369,1444,1521,6400,1681,1764,1849,7744,18225,2116,2209
%N A059479 Number of 3 X 3 matrices with elements from {0,...,n-1} such that the middle element of each of the eight lines of three (rows, columns and diagonals) is the square (mod n) of the difference of the end elements.
%C A059479 This sequence is multiplicative. - _Mitch Harris_, Apr 19 2005
%C A059479 The sequence enumerates the solutions of a system of polynomials equations modulo n, hence is multiplicative by the Chinese Remainder Theorem. The middle entry of the 3 X 3 is zero modulo n. - _Michael Somos_, Apr 30 2005
%H A059479 Amiram Eldar, <a href="/A059479/b059479.txt">Table of n, a(n) for n = 1..10000</a>
%F A059479 a(n) = A008833(n)*n^2, where A008833(n) is the largest square that divides n.
%F A059479 Multiplicative with a(p^e) = p^(3e - (e % 2)). - _Mitch Harris_, Jun 09 2005
%F A059479 Dirichlet g.f.: zeta(s-2)*zeta(2s-6)/zeta(2s-4). - _R. J. Mathar_, Mar 30 2011
%F A059479 Sum_{k=1..n} a(k) ~ zeta(3/2) * n^(7/2) / (7*zeta(3)). - _Vaclav Kotesovec_, Sep 16 2020
%F A059479 Sum_{n>=1} 1/a(n) = 15*zeta(6)/Pi^2 = A082020 * A013664 = 1.546176... . - _Amiram Eldar_, Nov 03 2022
%t A059479 f[p_, e_] := p^(3*e - (Mod[e, 2])); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 16 2020 *)
%o A059479 (PARI) a(n)=if(n<1,0,n^3/core(n)) /* _Michael Somos_, Apr 30 2005 */
%Y A059479 Cf. A008833, A013664, A082020.
%K A059479 nonn,mult
%O A059479 1,2
%A A059479 _John W. Layman_, Feb 15 2001