This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059479 #30 Nov 03 2022 05:44:24 %S A059479 1,4,9,64,25,36,49,256,729,100,121,576,169,196,225,4096,289,2916,361, %T A059479 1600,441,484,529,2304,15625,676,6561,3136,841,900,961,16384,1089, %U A059479 1156,1225,46656,1369,1444,1521,6400,1681,1764,1849,7744,18225,2116,2209 %N A059479 Number of 3 X 3 matrices with elements from {0,...,n-1} such that the middle element of each of the eight lines of three (rows, columns and diagonals) is the square (mod n) of the difference of the end elements. %C A059479 This sequence is multiplicative. - _Mitch Harris_, Apr 19 2005 %C A059479 The sequence enumerates the solutions of a system of polynomials equations modulo n, hence is multiplicative by the Chinese Remainder Theorem. The middle entry of the 3 X 3 is zero modulo n. - _Michael Somos_, Apr 30 2005 %H A059479 Amiram Eldar, <a href="/A059479/b059479.txt">Table of n, a(n) for n = 1..10000</a> %F A059479 a(n) = A008833(n)*n^2, where A008833(n) is the largest square that divides n. %F A059479 Multiplicative with a(p^e) = p^(3e - (e % 2)). - _Mitch Harris_, Jun 09 2005 %F A059479 Dirichlet g.f.: zeta(s-2)*zeta(2s-6)/zeta(2s-4). - _R. J. Mathar_, Mar 30 2011 %F A059479 Sum_{k=1..n} a(k) ~ zeta(3/2) * n^(7/2) / (7*zeta(3)). - _Vaclav Kotesovec_, Sep 16 2020 %F A059479 Sum_{n>=1} 1/a(n) = 15*zeta(6)/Pi^2 = A082020 * A013664 = 1.546176... . - _Amiram Eldar_, Nov 03 2022 %t A059479 f[p_, e_] := p^(3*e - (Mod[e, 2])); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 16 2020 *) %o A059479 (PARI) a(n)=if(n<1,0,n^3/core(n)) /* _Michael Somos_, Apr 30 2005 */ %Y A059479 Cf. A008833, A013664, A082020. %K A059479 nonn,mult %O A059479 1,2 %A A059479 _John W. Layman_, Feb 15 2001