This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059485 #32 Sep 16 2024 17:19:45 %S A059485 5,7,10,11,13,14,15,17,19,20,21,22,23,25,26,28,29,30,31,33,34,35,37, %T A059485 38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,55,56,57,58,59,60,61,62, %U A059485 63,65,66,67,68,69,70,71,73,74,75,76,77,78,79,80,82,83,84,85,86,87,88,89 %N A059485 Highest prime factor is greater than 3. %C A059485 Numbers n such that A006530(n) > 3. - _Felix Fröhlich_, Dec 22 2016 %H A059485 Vincenzo Librandi, <a href="/A059485/b059485.txt">Table of n, a(n) for n = 1..9933</a> %F A059485 a(n) ~ n. - _Charles R Greathouse IV_, Jul 06 2016 %t A059485 fQ[n_]:=! PowerMod[6, n, n]==0; Select[Range [100], fQ] (* _Vincenzo Librandi_, Dec 22 2016 *) %o A059485 (PARI) is(n)=n>>=valuation(n,2); n/=3^valuation(n,3); n>1 \\ _Charles R Greathouse IV_, Jul 06 2016; corrected by _Michel Marcus_, May 19 2022 %o A059485 (Magma) [n: n in [1..100] | not PrimeDivisors(n) subset [2, 3]]; // _Vincenzo Librandi_, Dec 22 2016 %o A059485 (Python) %o A059485 from sympy import integer_log %o A059485 def A059485(n): %o A059485 def f(x): return n+sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) %o A059485 m, k = n, f(n) %o A059485 while m != k: m, k = k, f(k) %o A059485 return m # _Chai Wah Wu_, Sep 16 2024 %Y A059485 Complement of A003586. Cf. A007310 for numbers whose smallest prime factor (if there is one) is greater than 3. %Y A059485 Cf. A006530. %K A059485 nonn,easy %O A059485 1,1 %A A059485 Simone Caramel (simonecaramel(AT)libero.it), Feb 04 2001 %E A059485 More terms from _Henry Bottomley_, Feb 05 2001