This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059499 #46 Jan 26 2025 02:16:54 %S A059499 1,1,1,2,1,3,1,4,2,5,3,16,1,5,5,8,1,24,1,38,9,11,3,68,6,5,4,54,7,79,1, %T A059499 16,11,5,13,462,3,5,13,140,3,123,7,110,54,11,7,664,2,114,29,118,7,124, %U A059499 59,188,13,55,3,4456,1,5,82,96,5,353,3,118,11,485,7 %N A059499 a(n) = |{m : multiplicative order of 2 mod m = n}|. %C A059499 Also, number of primitive factors of 2^n - 1 (cf. A212953). - _Max Alekseyev_, May 03 2022 %C A059499 The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). See A002326. %C A059499 a(n) is odd iff n is squarefree, A005117. - _Thomas Ordowski_, Jan 18 2014 %C A059499 The set S for which a(n) = |S| contains an odd number of prime powers p^k, where k > 0 and p == 3 (mod 4), iff n is squarefree and greater than one. - _Isaac Saffold_, Dec 28 2019 %H A059499 Max Alekseyev, <a href="/A059499/b059499.txt">Table of n, a(n) for n = 1..1206</a> (first 200 terms from Alois P. Heinz) %F A059499 a(n) = Sum_{d|n} A008683(n/d) * A046801(d) = Sum_{d|A007947(n)} A008683(d) * A046801(n/d). - _Max Alekseyev_, May 03 2022 %F A059499 a(n) = 1 iff 2^n-1 is noncomposite. a(prime(n)) = 2^A088863(n)-1. - _Thomas Ordowski_, Jan 16 2014 %e A059499 a(3) = |{7}| = 1, a(4) = |{5,15}| = 2, a(6) = |{9,21,63}| = 3. %p A059499 with(numtheory): %p A059499 a:= n-> add(mobius(n/d)*tau(2^d-1), d=divisors(n)): %p A059499 seq(a(n), n=1..100); # _Alois P. Heinz_, May 31 2012 %t A059499 a[n_] := Sum[ MoebiusMu[n/d] * DivisorSigma[0, 2^d - 1], {d, Divisors[n]}]; Table[a[n], {n, 1, 71} ] (* _Jean-François Alcover_, Dec 12 2012 *) %o A059499 (PARI) a(n) = sumdiv(n, d, moebius(n/d) * numdiv(2^d-1)); \\ _Amiram Eldar_, Jan 25 2025 %Y A059499 Column k=2 of A212957. %Y A059499 Primitive factors of b^n - 1: this sequence (b=2), A059885 (b=3), A059886 (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10). %Y A059499 Cf. A001037, A046801, A058943, A059912, A112927, A212953. %K A059499 nonn %O A059499 1,4 %A A059499 _Vladeta Jovovic_, Feb 04 2001 %E A059499 More terms from _John W. Layman_, Mar 22 2002 %E A059499 More terms from _Alois P. Heinz_, May 31 2012