This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059519 #11 Jul 27 2019 14:57:51 %S A059519 1,2,3,4,5,6,8,9,10,11,12,14,16,17,18,19,20,21,24,26,28,32,33,34,35, %T A059519 36,37,38,40,41,44,48,50,52,56,64,65,66,67,68,69,70,72,73,74,80,81,84, %U A059519 88,96,98,100,104,112,116,128,129,130,131,132,133,134,136,137,138,139,140 %N A059519 Number of partitions of n all of whose subpartitions sum to distinct values. Partition(n) = [a, b, c...] where 2n = 2^a + 2^b + 2^c + ... %C A059519 Partition encoding as in A029931. Complement of A059520. %C A059519 From _Gus Wiseman_, Jul 22 2019: (Start) %C A059519 These are numbers whose positions of 1's in their reversed binary expansion form a strict knapsack partition (A275972). The initial terms together with their corresponding partitions are: %C A059519 1: (1) %C A059519 2: (2) %C A059519 3: (2,1) %C A059519 4: (3) %C A059519 5: (3,1) %C A059519 6: (3,2) %C A059519 8: (4) %C A059519 9: (4,1) %C A059519 10: (4,2) %C A059519 11: (4,2,1) %C A059519 12: (4,3) %C A059519 14: (4,3,2) %C A059519 16: (5) %C A059519 17: (5,1) %C A059519 18: (5,2) %C A059519 19: (5,2,1) %C A059519 20: (5,3) %C A059519 (End) %e A059519 14=2+4+8 so Partition(14) = [2,3,4], whose sub-sums are 0,2,3,4,5,6,7 and 14. %t A059519 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A059519 Select[Range[100],UnsameQ@@Total/@Subsets[bpe[#]]&] (* _Gus Wiseman_, Jul 22 2019 *) %Y A059519 Cf. A000120, A029931, A048793, A059520, A070939, A108917, A272020, A275972, A299702, A326015. %Y A059519 Other sequences classifying numbers by their binary indices: A291166 (relatively prime), A295235 (arithmetic progression), A326669 (integer average), A326675 (pairwise coprime). %K A059519 easy,nonn %O A059519 1,2 %A A059519 _Marc LeBrun_, Jan 19 2001