This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059539 #34 Feb 16 2025 08:32:43 %S A059539 1,2,4,5,7,8,10,11,12,14,15,17,18,20,21,23,24,25,27,28,30,31,33,34,36, %T A059539 37,38,40,41,43,44,46,47,49,50,51,53,54,56,57,59,60,62,63,64,66,67,69, %U A059539 70,72,73,74,76,77,79,80,82,83,85,86,87,89,90,92,93,95,96,98,99,100 %N A059539 Beatty sequence for 3^(1/3). %H A059539 Harry J. Smith, <a href="/A059539/b059539.txt">Table of n, a(n) for n = 1..2000</a> %H A059539 Aviezri S. Fraenkel, Jonathan Levitt, and Michael Shimshoni, <a href="http://dx.doi.org/10.1016/0012-365X(72)90012-X">Characterization of the set of values f(n)=[n alpha], n=1,2,...</a>, Discrete Math. 2 (1972), no.4, 335-345. %H A059539 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a> %H A059539 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %F A059539 a(n) = floor(n*A002581). - _R. J. Mathar_, Apr 12 2019 %t A059539 Floor[Range[100]*CubeRoot[3]] (* _Paolo Xausa_, Jul 05 2024 *) %o A059539 (PARI) { default(realprecision, 100); b=3^(1/3); for (n = 1, 2000, write("b059539.txt", n, " ", floor(n*b)); ) } \\ _Harry J. Smith_, Jun 27 2009 %o A059539 (Python) %o A059539 from sympy import integer_nthroot %o A059539 def A059539(n): return integer_nthroot(3*n**3,3)[0] # _Chai Wah Wu_, Mar 16 2021 %Y A059539 Beatty complement is A059540. %Y A059539 Partial sums of A081129. %Y A059539 Cf. A002581. %K A059539 nonn,easy %O A059539 1,2 %A A059539 _Mitch Harris_, Jan 22 2001