cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059558 Beatty sequence for 1 + 1/gamma^2.

This page as a plain text file.
%I A059558 #36 Feb 16 2025 08:32:44
%S A059558 4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,
%T A059558 96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156,160,
%U A059558 164,168,172,176,180,184,188,192,196,200,204,208,212,216,220,224,228
%N A059558 Beatty sequence for 1 + 1/gamma^2.
%C A059558 The first term where this sequence breaks the progression a(n) = a(n-1) + 4 is a(715) = 2861. - _Max Alekseyev_, Mar 03 2007
%H A059558 Harry J. Smith, <a href="/A059558/b059558.txt">Table of n, a(n) for n = 1..2000</a>
%H A059558 Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, <a href="http://dx.doi.org/10.1016/0012-365X(72)90012-X">Characterization of the set of values f(n)=[n alpha], n=1,2,...</a>, Discrete Math. 2 (1972), no.4, 335-345.
%H A059558 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/NonRecursions.html">Non Recursions</a>
%H A059558 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a>
%H A059558 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F A059558 a(n) = floor(n*(1+1/gamma^2)) where 1+1/gamma^2= 1+A098907^2 = 4.00139933... - _R. J. Mathar_, Sep 29 2023
%t A059558 Floor[Range[100]*(1 + 1/EulerGamma^2)] (* _Paolo Xausa_, Jul 05 2024 *)
%o A059558 (PARI) { default(realprecision, 100); b=1 + 1/Euler^2; for (n = 1, 2000, write("b059558.txt", n, " ", floor(n*b)); ) } \\ _Harry J. Smith_, Jun 28 2009
%Y A059558 Beatty complement is A059557.
%Y A059558 Cf. A001620, A098907, A155969.
%K A059558 nonn,easy
%O A059558 1,1
%A A059558 _Mitch Harris_, Jan 22 2001
%E A059558 Removed incorrect comment, _Joerg Arndt_, Nov 14 2014