cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059571 From Mertens's conjecture (1): floor(sqrt(n)) - |M(n)|, where M is Mertens's function A002321.

This page as a plain text file.
%I A059571 #19 May 21 2023 14:49:55
%S A059571 0,1,0,1,0,1,0,0,1,2,1,1,0,1,2,3,2,2,1,1,2,3,2,2,3,4,4,4,3,2,1,1,2,3,
%T A059571 4,5,4,5,6,6,5,4,3,3,3,4,3,3,4,4,5,5,4,4,5,5,6,7,6,6,5,6,6,7,8,7,6,6,
%U A059571 7,6,5,5,4,5,5,5,6,5,4,4,5,6,5,5,6,7,8,8,7,7,8,8,9
%N A059571 From Mertens's conjecture (1): floor(sqrt(n)) - |M(n)|, where M is Mertens's function A002321.
%C A059571 Mertens conjectured that |A002321(n)| < sqrt(n) for all n > 1. This is now known to be false. So eventually there will be negative terms.
%D A059571 D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VI.2.
%D A059571 K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 267.
%H A059571 Paolo Xausa, <a href="/A059571/b059571.txt">Table of n, a(n) for n = 1..10000</a>
%H A059571 A. M. Odlyzko and H. J. J. te Riele, <a href="http://www.dtc.umn.edu/~odlyzko/doc/zeta.html">Disproof of the Mertens conjecture</a>, J. reine angew. Math., 357 (1985), pp. 138-160.
%t A059571 Table[Floor[Sqrt[n]] - Abs[Plus @@ MoebiusMu[Range[n]]], {n, 1, 80}] (* Carl Najafi, Aug 17 2011 *)
%Y A059571 Cf. A002321, A059572, A059581.
%K A059571 sign
%O A059571 1,10
%A A059571 _N. J. A. Sloane_, Feb 16 2001