cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059572 From Mertens's conjecture (2): floor(sqrt(n)) - Mertens's function A002321(n).

This page as a plain text file.
%I A059572 #18 May 21 2023 14:50:16
%S A059572 0,1,2,3,4,3,4,4,5,4,5,5,6,5,4,5,6,6,7,7,6,5,6,6,7,6,6,6,7,8,9,9,8,7,
%T A059572 6,7,8,7,6,6,7,8,9,9,9,8,9,9,10,10,9,9,10,10,9,9,8,7,8,8,9,8,8,9,8,9,
%U A059572 10,10,9,10,11,11,12,11,11,11,10,11,12,12,13,12,13
%N A059572 From Mertens's conjecture (2): floor(sqrt(n)) - Mertens's function A002321(n).
%C A059572 Mertens conjectured that |A002321(n)| < sqrt(n) for all n > 1. This is now known to be false.
%D A059572 D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VI.2.
%H A059572 Paolo Xausa, <a href="/A059572/b059572.txt">Table of n, a(n) for n = 1..10000</a>
%H A059572 A. M. Odlyzko and H. J. J. te Riele, <a href="http://www.dtc.umn.edu/~odlyzko/doc/zeta.html">Disproof of the Mertens conjecture</a>, J. reine angew. Math., 357 (1985), pp. 138-160.
%t A059572 Table[Floor[Sqrt[n]] - Plus @@ MoebiusMu[Range[n]], {n, 1, 80}] (* _Carl Najafi_, Aug 17 2011 *)
%Y A059572 Cf. A002321, A059571.
%K A059572 nonn
%O A059572 1,3
%A A059572 _N. J. A. Sloane_, Feb 16 2001