cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059598 Tenth column (m=9) of convolution triangle A059594(n,m).

This page as a plain text file.
%I A059598 #8 Oct 20 2021 19:42:24
%S A059598 1,10,65,320,1320,4752,15400,45760,126500,328680,809380,1901120,
%T A059598 4282200,9289840,19482200,39619008,78337930,150954980,284060810,
%U A059598 522920640,943206264,1669294000,2902420600,4963400000
%N A059598 Tenth column (m=9) of convolution triangle A059594(n,m).
%H A059598 <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (10, -35, 20, 195, -498, -15, 1800, -2205, -2150, 7001, -2260, -9785, 10830, 4845, -15504, 4845, 10830, -9785, -2260, 7001, -2150, -2205,1800, -15, -498, 195, 20, -35, 10, -1).
%F A059598 G.f.: 1/((1-x^2)*(1-x))^10.
%F A059598 a(2*k)= binomial(n+14, 14)*(2*n+15)*(8*n^4+240*n^3+2185*n^2+5775*n+2907)/(19*9*17*15);
%F A059598 a(2*k+1)= binomial(k+15, 15)*2*(8*k^4+256*k^3+2767*k^2+11504*k+14535)/(17*9*19), k >= 0
%t A059598 CoefficientList[Series[1/((1-x^2)(1-x))^10,{x,0,30}],x] (* or *) LinearRecurrence[{10,-35,20,195,-498,-15,1800,-2205,-2150,7001,-2260,-9785,10830,4845,-15504,4845,10830,-9785,-2260,7001,-2150,-2205,1800,-15,-498,195,20,-35,10,-1},{1,10,65,320,1320,4752,15400,45760,126500,328680,809380,1901120,4282200,9289840,19482200,39619008,78337930,150954980,284060810,522920640,943206264,1669294000,2902420600,4963400000,8356661300,13865072520,22688862900,36646948800,58465921800,92190872400},30] (* _Harvey P. Dale_, Oct 20 2021 *)
%K A059598 nonn
%O A059598 0,2
%A A059598 _Wolfdieter Lang_, Feb 02 2001