This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059604 #21 Jun 03 2019 06:45:55 %S A059604 1,1,2,1,9,10,1,24,107,90,1,50,575,1750,1248,1,90,2135,16050,38244, %T A059604 24360,1,147,6265,95445,537334,1078728,631440,1,224,15610,424340, %U A059604 4734289,21569996,38105220,20865600,1,324,34482,1529640,30128049 %N A059604 Coefficients of polynomials (n-1)!*P(n,k), P(n,k) = Sum_{i=0..n} Stirling2(n,i)*binomial(k+i-1,k). %H A059604 Vladeta Jovovic, <a href="/A059604/a059604.pdf">More information</a> %e A059604 [1], %e A059604 [1, 2], %e A059604 [1, 9, 10], %e A059604 [1, 24, 107, 90], %e A059604 [1, 50, 575, 1750, 1248], %e A059604 [1, 90, 2135, 16050, 38244, 24360], %e A059604 [1, 147, 6265, 95445, 537334, 1078728, 631440], %e A059604 ... %e A059604 P(2,k) = k + 2, %e A059604 P(3,k) = (1/2!)*(k^2 + 9*k + 10), %e A059604 P(4,k) = (1/3!)*(k^3 + 24*k^2 + 107*k + 90). %p A059604 P := (n, k) -> (n-1)!*add(Stirling2(n,i)*binomial(k+i-1,k), i=0..n): %p A059604 for n from 1 to 8 do seq(coeff(expand(P(n,x)),x,n-k), k=1..n) od; # _Peter Luschny_, Nov 07 2018 %t A059604 row[n_] := (n-1)! CoefficientList[Sum[StirlingS2[n,i] Binomial[k+i-1,k] // FunctionExpand, {i,0,n}], k] // Reverse; %t A059604 Array[row,10] // Flatten (* _Jean-François Alcover_, Jun 03 2019 *) %o A059604 (PARI) row(n)={Vec((n-1)!*sum(i=0, n, stirling(n,i,2)*binomial(x+i-1,i-1)))} %o A059604 for(n=1, 10, print(row(n))) \\ _Andrew Howroyd_, Nov 07 2018 %Y A059604 Cf. A059605, A059606, A320962. %K A059604 nonn,tabl %O A059604 1,3 %A A059604 _Vladeta Jovovic_, Jan 29 2001