This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059609 #64 Apr 27 2025 05:12:47 %S A059609 39,715,1983,2319,2499,3775,12819,63583,121555,121839,468523,908739 %N A059609 Numbers k such that 2^k - 7 is prime. %D A059609 J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 39, p. 15, Ellipses, Paris 2008. %D A059609 J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 395 pp. 55; 218, Ellipses Paris 2004. %D A059609 Wacław Sierpiński, Co wiemy, a czego nie wiemy o liczbach pierwszych. Warsaw: PZWS, 1961, pp. 46-47. %D A059609 Wacław Sierpiński, O stu prostych, ale trudnych zagadnieniach arytmetyki. Warsaw: PZWS, 1959, pp. 31, 75. %H A059609 Keith Conrad, <a href="https://kconrad.math.uconn.edu/blurbs/ugradnumthy/squaresandinfmanyprimes.pdf">Square patterns and infinitude of primes</a>, University of Connecticut, 2019. %H A059609 Jon Grantham and Andrew Granville, <a href="https://arxiv.org/abs/2307.07894">Fibonacci primes, primes of the form 2^n-k and beyond</a>, arXiv:2307.07894 [math.NT], 2023. %H A059609 Henri Lifchitz and Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=2%5En-7">Search for 2^n-7</a>, PRP Top Records. %e A059609 k = 39, 2^39 - 7 = 549755813881 is prime. %t A059609 Select[Range[3, 20000], PrimeQ[2^# - 7] &] (* _Vladimir Joseph Stephan Orlovsky_, Feb 26 2011 *) %o A059609 (PARI) is(n)=isprime(2^n-7) \\ _Charles R Greathouse IV_, Feb 17 2017 %Y A059609 Cf. A096502. %Y A059609 Cf. Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), this sequence (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), A356826 (d=29). %K A059609 nonn,more %O A059609 1,1 %A A059609 _Andrey V. Kulsha_, Feb 02 2001 %E A059609 a(8) from _Henri Lifchitz_, a(9)-a(10) from _Gary Barnes_, added by _Max Alekseyev_, Feb 09 2012 %E A059609 a(11) from Lelio R Paula, added by _Max Alekseyev_, Oct 25 2015 %E A059609 a(12) from _Jon Grantham_, Aug 09 2023