This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059611 #26 Nov 19 2023 08:26:20 %S A059611 6,8,12,16,18,20,22,24,32,36,42,44,96,104,152,174,198,336,414,444,468, %T A059611 488,664,808,848,3632,4062,5586,5904,6348,8628,9224,9916,13136,15966, %U A059611 17120,17568,17652,20560,31572,33644,104098,115842,130572,164110,189414,205110,406758 %N A059611 Numbers k such that 2^k - 17 is prime. %C A059611 All terms are even since for odd k, 2^k - 17 is divisible by 3. %H A059611 Henri Lifchitz and Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=2%5En-17">Search for 2^n-17</a>, PRP Top Records. %e A059611 444 is present because 2^444 - 17 is prime. %t A059611 Select[Range[5,20000],PrimeQ[2^#-17]&] (* _Vladimir Joseph Stephan Orlovsky_, Feb 27 2011 *) %o A059611 (PARI) is(n)=isprime(2^n-17) \\ _Charles R Greathouse IV_, Feb 17 2017 %Y A059611 Cf. A096502. %Y A059611 Cf. Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), A059609 (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), this sequence (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), A356826 (d=29). %K A059611 nonn %O A059611 1,1 %A A059611 _Andrey V. Kulsha_, Feb 05 2001 %E A059611 a(34)-a(40) from Max Alekseyev, a(41) from Paul Underwood, a(42)-a(44) from Gary Barnes, a(45)-a(47) from Lelio R Paula, added by _Max Alekseyev_, Feb 09 2012 %E A059611 a(48) by Lelio R. Paula, added by _Robert Price_, Dec 06 2013