A059684 Triangle T(n,k) giving number of 4 X k polyominoes with n cells (n >= 4, 1<=k<=n-3).
1, 0, 3, 0, 6, 15, 0, 2, 39, 30, 0, 1, 59, 148, 61, 0, 0, 42, 349, 383, 97, 0, 0, 21, 519, 1304, 822, 155, 0, 0, 4, 488, 2847, 3548, 1551, 220, 0, 0, 1, 321, 4441, 10323, 8239, 2680, 313, 0, 0, 0, 122, 5008, 21995, 29442, 16821, 4327, 415, 0, 0, 0, 35, 4168, 36035, 79155, 71742, 31576
Offset: 4
Examples
Triangle starts: 1; 0,3; 0,6,15; 0,2,39, 30; 0,1,59,148, 61; 0,0,42,349, 383, 97; 0,0,21,519,1304, 822, 155; 0,0, 4,488,2847, 3548, 1551, 220; 0,0, 1,321,4441,10323, 8239, 2680, 313; 0,0, 0,122,5008,21995,29442,16821, 4327,415; 0,0, 0, 35,4168,36035,79155,71742,31576,... There are T(5,2)=3 out of 12 pentominoes that fill the 4X2 shape: the L, N and Y. The F, T, V, W, X, and Z require both dimensions >= 3; the P and U would fit but not touch all sides; the I requires one dimension of 5. - _R. J. Mathar_, May 08 2019
Links
- R. C. Read, Contributions to the cell growth problem, Canad. J. Math., 14 (1962), 1-20.
Crossrefs
Cf. A059680 (flipped or rotated considered distinct).
Extensions
Changed 518 to 519 (correcting Read...) and added values for n>=11 cells. R. J. Mathar, May 12 2019
Comments