This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059690 #16 Apr 03 2023 10:36:09 %S A059690 1,2,2,2,3,5,7,13,20,31,52,83,142,242,412,742,1308,2294,4040,7327, %T A059690 13253,24255,44306,81700,150401,277335,513705,954847,1780466,3325109, %U A059690 6224282,11676337,21947583,41327438 %N A059690 Number of distinct Cunningham chains of first kind whose initial prime (cf. A059453) <= 2^n. %H A059690 C. K. Caldwell, <a href="https://t5k.org/glossary/page.php/CunninghamChain">Cunningham Chains</a> %H A059690 W. Roonguthai, <a href="http://ksc9.th.com/warut/cunningham.html">Yves Gallot's Proth.exe and Cunningham Chains</a> %e A059690 a(11)-a(10) = 21 means that between 1024 and 2048 exactly 21 primes introduce Cunningham chains: {1031, 1049, 1103, 1223, 1229, 1289, 1409, 1451, 1481, 1499, 1511, 1559, 1583, 1601, 1733, 1811, 1889, 1901, 1931, 1973, 2003}. %e A059690 Their lengths are 2, 3 or 4. Thus the complete chains spread over more than one binary size-zone: {1409, 2819, 5639, 11279}. The primes 1439 and 2879 also form a chain but 1439 is not at the beginning of that chain, 89 is. %t A059690 c = 0; k = 1; Do[ While[k <= 2^n, If[ PrimeQ[k] && !PrimeQ[(k - 1)/2] && PrimeQ[2k + 1], c++ ]; k++ ]; Print[c], {n, 1, 29}] %o A059690 (Python) %o A059690 from itertools import count, islice %o A059690 from sympy import isprime, primerange %o A059690 def c(p): return not isprime((p-1)//2) and isprime(2*p+1) %o A059690 def agen(): %o A059690 s = 1 %o A059690 for n in count(2): %o A059690 yield s; s += sum(1 for p in primerange(2**(n-1)+1, 2**n) if c(p)) %o A059690 print(list(islice(agen(), 20))) # _Michael S. Branicky_, Oct 09 2022 %Y A059690 Cf. A023272, A023302, A023330, A005602, A007700, A053176, A059452-A059456, A059500, A057331, A059688, A007053, A036378, A029837, A007053. %K A059690 nonn,more %O A059690 1,2 %A A059690 _Labos Elemer_, Feb 06 2001 %E A059690 Edited and extended by _Robert G. Wilson v_, Nov 23 2002 %E A059690 Title and a(30)-a(31) corrected, and a(32) from _Sean A. Irvine_, Oct 02 2022 %E A059690 a(33)-a(34) from _Michael S. Branicky_, Oct 09 2022