This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A059695 #24 Sep 08 2022 08:45:03 %S A059695 19,37,41,89,97,139,193,271,277,281,313,331,353,373,383,397,401,421, %T A059695 439,443,557,587,853,971,991,1039,1063,1109,1129,1153,1171,1181,1249, %U A059695 1277,1289,1297,1303,1307,1319,1399,1409,1753,1789,1823,1847,1973 %N A059695 Primes p such that p^2 reversed is also prime. %H A059695 T. D. Noe, <a href="/A059695/b059695.txt">Table of n, a(n) for n = 1..1000</a> %t A059695 Select[ Range[ 2500 ], PrimeQ[ # ] && PrimeQ[ ToExpression[ StringReverse[ ToString[ #^2 ] ] ] ] & ] %o A059695 (Magma) [p: p in PrimesUpTo(2000) | IsPrime(Seqint(Reverse(Intseq(p^2))))]; // _Vincenzo Librandi_, Apr 12 2013 %o A059695 (Python) %o A059695 from sympy import isprime, primerange %o A059695 def ok(p): return isprime(int(str(p**2)[::-1])) %o A059695 print([p for p in primerange(1, 2000) if ok(p)]) # _Michael S. Branicky_, Dec 27 2021 %o A059695 (PARI) select(p->isprime(fromdigits(Vecrev(digits(p^2)))), primes(1000)) \\ _Mohammed Yaseen_, Dec 31 2021 %Y A059695 Cf. A059007. %Y A059695 Primes p such that p^k reversed is also prime: A059696 (k=3), ..., A059705 (k=12). %K A059695 nonn,base %O A059695 1,1 %A A059695 _Robert G. Wilson v_, Feb 06 2001