cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059738 Binomial transform of A054341 and inverse binomial transform of A049027.

This page as a plain text file.
%I A059738 #40 Mar 22 2023 18:11:46
%S A059738 1,3,10,34,117,405,1407,4899,17083,59629,208284,727900,2544751,
%T A059738 8898873,31125138,108881166,380928795,1332824049,4663705782,
%U A059738 16319702046,57109857519,199859075307,699435489795,2447823832671,8566818534141,29982268505595,104933418068332
%N A059738 Binomial transform of A054341 and inverse binomial transform of A049027.
%C A059738 First column of the Riordan array ((1-2x)/(1+x+x^2),x/(1+x+x^2))^(-1). [_Paul Barry_, Nov 06 2008]
%C A059738 Apparently the Motzkin transform of A125176, supposed A125176 is interpreted with offset 0. [_R. J. Mathar_, Dec 11 2008]
%C A059738 a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors. Example: a(3)=34 because, denoting  U=(1,1), H=(1,0), and D=(1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 1 path of shape UHD. - _Emeric Deutsch_, May 02 2011
%H A059738 Vincenzo Librandi, <a href="/A059738/b059738.txt">Table of n, a(n) for n = 0..1000</a>
%H A059738 Isaac DeJager, Madeleine Naquin, and Frank Seidl, <a href="https://www.valpo.edu/mathematics-statistics/files/2019/08/Drube2019.pdf">Colored Motzkin Paths of Higher Order</a>, VERUM 2019.
%H A059738 Taras Goy and Mark Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Shattuck/sh36.html">Determinants of Some Hessenberg-Toeplitz Matrices with Motzkin Number Entries</a>, J. Int. Seq., Vol. 26 (2023), Article 23.3.4.
%H A059738 Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
%H A059738 J. W. Layman, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html">The Hankel Transform and Some of its Properties</a>, J. Integer Sequences, 4 (2001), #01.1.5.
%F A059738 a(n) = Sum[k=0..n, 2^(n-k)*A026300(n, k) ], where A026300 is the Motzkin triangle. - _Ralf Stephan_, Jan 25 2005 [Corrected by _Philippe Deléham_, Nov 29 2009]
%F A059738 a(n)= A126954(n,0). [_Philippe Deléham_, Nov 24 2009]
%F A059738 G.f.: 2/(1-5*x+sqrt(1-2*x-3*x^2)). - _Emeric Deutsch_, May 02 2011
%F A059738 Recurrence: 2*(n+1)*a(n) = (11*n+5)*a(n-1) - (8*n+5)*a(n-2) - 21*(n-2)*a(n-3). - _Vaclav Kotesovec_, Oct 11 2012
%F A059738 a(n) ~ 3*7^n/2^(n+2). - _Vaclav Kotesovec_, Oct 11 2012
%F A059738 G.f.: 1/(1 - 3*x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...))))), a continued fraction. - _Ilya Gutkovskiy_, Nov 19 2021
%t A059738 Table[SeriesCoefficient[2/(1-5*x+Sqrt[1-2*x-3*x^2]),{x,0,n}],{n,0,20}]
%o A059738 (PARI) x='x+O('x^66); Vec(2/(1-5*x+sqrt(1-2*x-3*x^2))) \\ _Joerg Arndt_, May 06 2013
%K A059738 nonn
%O A059738 0,2
%A A059738 _John W. Layman_, Feb 09 2001
%E A059738 More terms from _Vincenzo Librandi_, May 06 2013