cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059761 Initial primes of Cunningham chains of first type with length exactly 2. Primes in A059453 that survive as primes only one "2p-1 iteration", forming chains of exactly 2 terms.

This page as a plain text file.
%I A059761 #27 Feb 16 2025 08:32:44
%S A059761 3,29,53,113,131,173,191,233,239,251,281,293,419,431,443,491,593,641,
%T A059761 653,659,683,743,761,809,911,953,1013,1049,1103,1223,1289,1499,1559,
%U A059761 1583,1601,1733,1973,2003,2069,2129,2141,2273,2339,2351,2393,2399,2543
%N A059761 Initial primes of Cunningham chains of first type with length exactly 2. Primes in A059453 that survive as primes only one "2p-1 iteration", forming chains of exactly 2 terms.
%C A059761 Primes p such that {(p-1)/2, p, 2p+1, 4p+3} = {composite, prime, prime, composite}.
%H A059761 Amiram Eldar, <a href="/A059761/b059761.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)
%H A059761 Chris Caldwell's Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=CunninghamChain">Cunningham chains</a>.
%H A059761 Warut Roonguthai, <a href="http://web.archive.org/web/20010405230842/http://ksc9.th.com/warut/cunningham.html">Yves Gallot's Proth.exe and Cunningham Chains</a>. [Wayback Machine link]
%H A059761 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CunninghamChain.html">Cunningham Chain</a>.
%e A059761 53 is a term because 26 and 215 are composites, and 53 and 107 are primes.
%t A059761 ccftQ[p_]:=Boole[PrimeQ[{(p-1)/2,p,2 p+1,4 p+3}]]=={0,1,1,0}; Select[ Prime[ Range[400]],ccftQ] (* _Harvey P. Dale_, Jun 19 2021 *)
%Y A059761 Cf. A023272, A023302, A023330, A005384, A005385, A059452, A059453, A059454, A059455, A007700.
%K A059761 nonn
%O A059761 1,1
%A A059761 _Labos Elemer_, Feb 20 2001