cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059764 Initial (unsafe) primes of Cunningham chains of first type with length exactly 5. Primes in A059453 that survive as primes just four "2p+1 iterations", forming chains of exactly 5 terms.

This page as a plain text file.
%I A059764 #22 Jul 15 2024 10:23:29
%S A059764 2,53639,53849,61409,66749,143609,167729,186149,206369,268049,296099,
%T A059764 340919,422069,446609,539009,594449,607319,658349,671249,725009,
%U A059764 775949,812849,819509,926669,1008209,1092089,1132949,1271849
%N A059764 Initial (unsafe) primes of Cunningham chains of first type with length exactly 5. Primes in A059453 that survive as primes just four "2p+1 iterations", forming chains of exactly 5 terms.
%C A059764 Primes p such that {(p-1)/2, p, 2p+1, 4p+3, 8p+7, 16p+15, 32p+31} = {nonprime, prime, prime, prime, prime, prime, composite}.
%H A059764 Amiram Eldar, <a href="/A059764/b059764.txt">Table of n, a(n) for n = 1..10000</a>
%H A059764 Chris Caldwell's Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=CunninghamChain">Cunningham chains</a>.
%e A059764 2 is here because (2-1)/2 = 1/2 and 32*2+31 = 95 are not primes, while 2, 5, 11, 23, and 47 give a first-kind Cunningham chain of 5 primes which cannot be continued.
%e A059764 53639 is here because through <2p+1>, 53639 -> 107279 -> 214559 -> 429119 -> 858239 and the chain ends here (with this operator).
%t A059764 l5Q[n_]:=Module[{a=PrimeQ[(n-1)/2],b=PrimeQ[ NestList[2#+1&,n,5]]}, Join[{a},b]=={False,True,True,True,True,True,False}]; Select[Range[ 1300000],l5Q] (* _Harvey P. Dale_, Oct 14 2012 *)
%Y A059764 Cf. A023272, A023302, A023330, A005384, A005385, A059452-A059455, A007700, A059759, A059760, A059761, A059762, A059763, A059764, A059765, A038397, A104349, A091314, A069362, A016093, A014937, A057326.
%K A059764 nonn
%O A059764 1,1
%A A059764 _Labos Elemer_, Feb 20 2001
%E A059764 Definition corrected by _Alexandre Wajnberg_, Aug 31 2005
%E A059764 Entry revised by _N. J. A. Sloane_, Apr 01 2006