cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059769 Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Fibonacci numbers.

This page as a plain text file.
%I A059769 #39 Feb 07 2025 18:08:10
%S A059769 1,7,27,83,239,659,1781,4751,12583,33175,87231,228983,600473,1573655,
%T A059769 4122467,10796939,28273519,74031979,193835949,507497759,1328692751,
%U A059769 3478637807,9107313407,23843452463,62423286769,163426800679,427857750891,1120147480451
%N A059769 Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Fibonacci numbers.
%H A059769 Harvey P. Dale, <a href="/A059769/b059769.txt">Table of n, a(n) for n = 3..1000</a>
%H A059769 R. Fröberg, C. Gottlieb and R. Häggkvist, <a href="http://dx.doi.org/10.1007/BF02573091">On numerical semigroups</a>, Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number).
%F A059769 a(n) = (F(n)-1)*(F(n+1)-1)-1 where F(n) is the n-th Fibonacci number.
%F A059769 G.f.: x^3*(1+4*x+5*x^2-x^4)/((1+x)*(1-3*x+x^2)*(1-x-x^2)). [_Colin Barker_, Feb 17 2012]
%F A059769 a(n) = F(n)*F(n+1) - F(n+2). - _Clark Kimberling_, Mar 05 2016
%e A059769 a(3)=1 because the 3rd and 4th Fibonacci numbers are 2 and 3, so a(3)=(2-1)(3-1)-1=1. Or, a(3)=1 because 1 is the largest positive integer that is not a nonnegative linear combination of 2 and 3.
%t A059769 Table[(Fibonacci[n]-1)(Fibonacci[n+1]-1)-1, {n,3,28}] (* _T. D. Noe_, Nov 27 2006 *)
%t A059769 f[n_]:=Fibonacci[n]; Table[f[n+1]f[n+2]-f[n+3], {n,2,40}] (* _Clark Kimberling_, Mar 05 2016 *)
%t A059769 FrobeniusNumber/@Partition[Fibonacci[Range[3,40]],2,1] (* _Harvey P. Dale_, Feb 07 2025 *)
%o A059769 (PARI) x='x+O('x^100); Vec(x^3*(1+4*x+5*x^2-x^4)/(1+x)/(1-3*x+x^2)/(1-x-x^2)) \\ _Altug Alkan_, Mar 05 2016
%o A059769 (Magma) [Fibonacci(n+1)*Fibonacci(n+2)-Fibonacci(n+3): n in [2..30]]; // _Vincenzo Librandi_, Mar 06 2016
%Y A059769 Cf. A000045.
%K A059769 nonn,easy
%O A059769 3,2
%A A059769 Victoria A Sapko (vsapko(AT)math.unl.edu), Feb 21 2001
%E A059769 Corrected by _T. D. Noe_, Nov 27 2006