A059776 Three-quadrant Ferrers graphs that partition n.
1, 2, 5, 11, 24, 48, 95, 178, 328, 585, 1025, 1754, 2958, 4897, 8002, 12889, 20523, 32289, 50296, 77550, 118521, 179553, 269881, 402532, 596178, 876942, 1281777, 1862015, 2689405, 3862891, 5519403, 7846393, 11100970, 15632733, 21917280
Offset: 0
References
- G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Maple
t1 := add( (-1)^(j)*q^(j*(j+1)/2)*(1-q^(j+1))/(1-q),j=0..101); t3 := mul((1-q^n)^3,n=1..101); series(t1/t3,q,101);
-
Mathematica
nmax = 50; CoefficientList[Series[Sum[(-1)^k*x^(k*(k+1)/2)*(1 - x^(k + 1))/(1 - x), {k, 0, nmax}]/Product[(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2018 *)
Formula
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(11/2) * n^(3/2)). - Vaclav Kotesovec, Jul 12 2018