cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059776 Three-quadrant Ferrers graphs that partition n.

Original entry on oeis.org

1, 2, 5, 11, 24, 48, 95, 178, 328, 585, 1025, 1754, 2958, 4897, 8002, 12889, 20523, 32289, 50296, 77550, 118521, 179553, 269881, 402532, 596178, 876942, 1281777, 1862015, 2689405, 3862891, 5519403, 7846393, 11100970, 15632733, 21917280
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2001

Keywords

References

  • G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.

Crossrefs

Programs

  • Maple
    t1 := add( (-1)^(j)*q^(j*(j+1)/2)*(1-q^(j+1))/(1-q),j=0..101); t3 := mul((1-q^n)^3,n=1..101); series(t1/t3,q,101);
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[(-1)^k*x^(k*(k+1)/2)*(1 - x^(k + 1))/(1 - x), {k, 0, nmax}]/Product[(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2018 *)

Formula

a(n) ~ exp(Pi*sqrt(2*n)) / (2^(11/2) * n^(3/2)). - Vaclav Kotesovec, Jul 12 2018