cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059782 Triangle T(n,k) giving exponent of power of 3 dividing entry (n,k) of trinomial triangle A027907.

This page as a plain text file.
%I A059782 #16 Jul 02 2025 16:02:01
%S A059782 0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1,2,1,1,
%T A059782 0,0,0,1,1,0,2,2,1,2,2,0,1,1,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,2,0,
%U A059782 0,2,0,0,3,0,0,2,0,0,2,0,0,0,2,2,1,2,2,1,2,2,0,2,2,1,2,2,1,2,2,0,0,0,0,1,1
%N A059782 Triangle T(n,k) giving exponent of power of 3 dividing entry (n,k) of trinomial triangle A027907.
%D A059782 Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
%H A059782 Boris A. Bondarenko, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/pascal.html">Generalized Pascal Triangles and Pyramids</a>, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 118.
%e A059782 0; 0,0,0; 0,0,1,0,0; 0,1,1,0,1,1,0; ...
%p A059782 with(numtheory): T := proc(i,j) option remember: if i >= 0 and j=0 then RETURN(1) fi: if i >= 0 and j=2*i then RETURN(1) fi: if i >= 1 and j=1 then RETURN(i) fi: if i >= 1 and j=2*i-1 then RETURN(i) fi: T(i-1,j-2)+T(i-1,j-1)+T(i-1,j): end: for i from 0 to 20 do for j from 0 to 2*i do if T(i,j) mod 3 <> 0 then printf(`%d,`,0) fi: if T(i,j) mod 3 = 0 and T(i,j) mod 2 = 0 then printf(`%d,`, ifactors(T(i,j))[2,2,2] ) fi: if T(i,j) mod 3 = 0 and T(i,j) mod 2 = 1 then printf(`%d,`, ifactors(T(i,j))[2,1,2] ) fi: #printf(`%d,`,T(i,j)) od:od: # _James Sellers_, Feb 22 2001
%K A059782 nonn,easy,tabf
%O A059782 0,30
%A A059782 _N. J. A. Sloane_, Feb 22 2001
%E A059782 More terms from _James Sellers_, Feb 22 2001