A059797 Second in a series of arrays counting standard tableaux by partition type.
2, 5, 5, 9, 16, 9, 14, 35, 35, 14, 20, 64, 90, 64, 20, 27, 105, 189, 189, 105, 27, 35, 160, 350, 448, 350, 160, 35, 44, 231, 594, 924, 924, 594, 231, 44, 54, 320, 945, 1728, 2100, 1728, 945, 320, 54, 65, 429, 1430, 3003, 4290, 4290, 3003, 1430, 429, 65
Offset: 0
Examples
a(5) = 16 because we can write T(2,2) = T(1,2) + T(1,1) + A007318(4,2) = 5 + 5 + 6. 2; 5, 5; 9, 16, 9; 14, 35, 35, 14; 20, 64, 90, 64, 20; 27, 105, 189, 189, 105, 27; T(n,k) as a grid for the first few lattice points. Where T(0,0)=2 since there are two ways to get to (0,0) with "0+0+2" steps under the move restrictions. k = 0 1 2 3 4 5 T(0,k) = 2 5 9 14 20 27 T(1,k) = 5 16 35 64 105 160 T(2,k) = 9 35 90 189 350 594 T(3,k) = 14 64 189 448 924 1728 T(4,k) = 20 105 350 924 2100 4290 T(5,k) = 27 160 594 1728 4290 9504 - _Juan Luis Vargas-Molina_, Mar 03 2014
References
- Stanton and White, Constructive Combinatorics, 1986, pp. 84, 91.
Links
- Cyann Donnot, Antoine Genitrini, Yassine Herida, Unranking Combinations Lexicographically: an efficient new strategy compared with others, hal-02462764 [cs] / [cs.DS] / [math] / [math.CO], 2020.
- Antoine Genitrini and Martin Pépin, Lexicographic unranking of combinations revisited, hal-03040740v2 [cs.DM] [cs.DS] [math.CO], 2020.
- Juan Luis Vargas-Molina, C++ Algorithm
Programs
-
Maple
A059797 := proc(n,k) option remember; if n <0 or k<0 or k>n then 0; else procname(n-1,k-1)+procname(n-1,k)+binomial(n+2,k+1) ; end if; end proc: seq(seq( A059797(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Jan 27 2011
-
Mathematica
t[n_, k_] /; (n < 0 || k < 0 || k > n) = 0; t[n_, k_] := t[n, k] = t[n - 1, k - 1] + t[n - 1, k] + Binomial[n + 2, k + 1]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Dec 20 2011, after R. J. Mathar *) T[n_, k_] := (k + 1)(n + k +4) FactorialPower[k + n + 2, n]/(n! + (n + 1)!) MatrixForm[Table[T[n, k], {n, 0, 10}, {k, 0, 10}]] (* Juan Luis Vargas-Molina, Mar 03 2014 *)
Formula
T(row, col) = T(row-1, col-1) + T(row-1, col) + A007318(row+2, col+1). - Corrected by R. J. Mathar, Jan 27 2011
T(n,k) = (k+1)(n+k+4)FallingFactorial(n+k+2,n)/((n+1)!+n!) n,k >= 0. - Juan Luis Vargas-Molina, Mar 03 2014
Comments