A059806 Minimal size of the center of G where G is a finite group of order n.
1, 2, 3, 4, 5, 1, 7, 2, 9, 1, 11, 1, 13, 1, 15, 2, 17, 1, 19, 1, 1, 1, 23, 1, 25, 1, 3, 2, 29, 1, 31, 2, 33, 1, 35, 1, 37, 1, 1, 2, 41, 1, 43, 2, 45, 1, 47, 1, 49, 1, 51, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 3, 2, 65, 1, 67, 1, 69, 1, 71, 1, 73, 1, 1, 2, 77, 1
Offset: 1
Keywords
Examples
a(6) = 1 because the symmetric group S_3 has trivial center.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..2000
- MathOverflow, Center of p-groups
Programs
-
GAP
A059806 := function(n) local min, fact, i; if (n mod 6 = 0) then return 1; fi; if (IsPrimePowerInt(n)) then fact := Factors(n); if (Length(fact) <> 2) then return fact[1]; fi; fi; min := n; for i in [1..NumberSmallGroups(n)] do min := Minimum(min, Size(Center(SmallGroup(n, i)))); if (min = 1) then break; fi; od; return min; end; # Eric M. Schmidt, Aug 27 2012
Formula
For prime p and m >= 3, a(p^m) = p. - Eric M. Schmidt, Aug 27 2012
Extensions
More terms from Eric M. Schmidt, Aug 27 2012
Comments